技术文档

EA非单片机 十字路口交通信号灯单片机控制系统设计与调试

小编 2024-10-08 技术文档 23 0

十字路口交通信号灯单片机控制系统设计与调试

第一章 控制要求

1.1 控制要求

(1)系统工作受开关控制,起动开关 ON 则系统工作;起动开关 OFF 则系统停止工作。

(2)控制对象有八个:

东西方向红灯两个 , 南北方向红灯两个,

东西方向黄灯两个 , 南北方向黄灯两个,

东西方向绿灯两个 , 南北方向绿灯两个,

东西方向左转弯绿灯两个,南北方向左转弯绿灯两个。

(3)另外东西方向、南北方向各设置显示两位十进制的7段显示器,用来显示倒数计数值。

1)高峰时段按时序图二(见附图)运行, 正常时段按时序图三(见附图)运行,晚上时段按提示警告方式运行,规律为: 东、南、西、北四个黄灯全部闪亮,其余灯全部熄灭。

高峰时段、正常时段及晚上时段的时序分配按时序图一运行(见附图)。

可以只选择高峰时段或正常时段进行设计,但最后评分值最高以良好评议;如果全部功能实现(需要设计一个24小时的时钟作为时段划分的基础),最高评分值以优秀评议。

时序图

第二章 系统方案设计

2.1交通灯运行状态分析

根据控制要求,系统以下图交通的运行状态来设计系统方案。

状态1南北直行;状态2南北左转; 状态3东西直行;状态4东西左转。

共有四种状态,分别设定为S1、S2、S3、S4,交通灯以这四种状态为一个周期。循环执行如图1.5所示:

图2.1 交通灯状态循环图

2.2系统总体方案设计

图2.2系统总体方案图

本系统采用MCS-51系列单片机AT89C51为中心器件来设计交通灯控制器,实现了正常、高峰、晚间时通过单片机的P1口设置红、绿、黄灯亮灭的功能。东西、南北两位7段显示器用来显示倒数计数值。系统分三种工作时段:正常、高峰、晚间,并且通过时间段来控制"正常"、"高峰"、"晚间"相互转化。

正常时段:南北段直行通行(绿灯)、东西段禁止(红灯)40s,同时南北段和东西段方向的数码管分别从40s和70s开始倒计时,至最后5s时南北段绿灯变成黄灯闪烁;此后南北段左转(左转绿灯亮)通行、东西段禁止(红灯)20s,同时南北段和东西段方向的数码管都从20s开始倒计时,至最后5s时南北段左转灯变成黄灯闪烁;再后东西段直行通行(绿灯)、南北段禁止(红灯)40s,同时东西段和南北段方向的数码管分别从40s和70s开始倒计时,至最后5s时东西段绿灯变成黄灯闪烁;最后东西段左转(左转绿灯亮)通行、南北段禁止(红灯)20s,同时东西段和南北段方向的数码管都从20s开始倒计时,至最后5s时东西段左转灯变成黄灯闪烁。

高峰时段:南北段、东西段的通行时间改为45s,左转的时间改为15s,其它与正常时段相同。

晚间时段:禁止左转和直行,东西南北四个方向黄灯闪亮。

第三章 系统电路设计

3.1控制芯片选择

图3.1 AT89C51引脚图

AT89C51是美国ATMEL公司生产的低电压,高性能CMOS 8位单片机,有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个可编程定时计数器,2个全双工串行通信口,2个读写口线,器件采用ATMEL公司的高密度、非易失性存储技术生产,与标准MCS-51指令系统及8051产品引脚兼容,片内置通用8位中央处理器(CPU)和Flash存储单元,可以按照常规方法对其进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。

3.2状态灯选择

该系统设计红、绿、黄状态灯显示的功能,用LED灯来代替实际的交通灯,由于有四种不同的运行状态,一个十字路口需要16个LED灯,倒计时数码管显示选用两位带片选的7段数码管,需要4个。数码管显示简单,程序简单,端口用的少。普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、等电源驱动点亮,它属于电流控制型,使用时需串接合适的限流电阻。

3.3系统硬件原理图设计

图3.2系统原理布置图

第四章 系统软件设计

4.1 程序流程图设计

图4.1主程序流程图

系统通电后,初始化定时器,进行24小时定时,在7:00到8:15或16:30到17:00时,按高峰时段运行。在6:30到7:00或8:15到16;30或18:00到19:00时,按正常时段运行。其余时段,按晚间时段运行。

图4.2 时钟及晚间时段程序流程图

本设计利用单片机的定时器T0中断来设置24小时定时,设置TH1=0x3C,TL1=0xB0.即每0.05秒中断一次。到第20次中断即过了20*0.05秒=1秒时,计60S时,满意1分钟,计满60分钟,满1小时,计满24小时,又重新开始计时。用定时器T1中断来设置数码管倒计时,每满1S时,使时间的计数值减1,便实现了倒计时的功能。

图4.3 高峰时段及正常时段流程图

4.2 系统编程

4.2.1定时器的中断设置

在单片机中,中断技术主要用于实时控制。所谓实时控制,就是要求计算机能及时地响应被控对象提出的分析、计算和控制等请求,使被控对象保持在最佳工作状态,以达到预定的控制效果。由于这些控制参量的请求都是随机发出的,而且要求单片机必须做出快速响应并及时处理,对此,只有靠中断技术才能实现。

本系统中的定时时钟及倒计时的设置和相应中断服务子程序如下:

/*24小时时钟 */

void Timer0Cofig(){

TMOD=0x01; //T0定时器工作方式

TH0=0x3C; //设置初始值,定时50MS

TL0=0xB0;

ET0=1; //定时器开中断

TR0=1; //启动定时器0

EA=1; //CPU开中断总允许

}

void T0int() interrupt 1{

TH0=0x3C; //设置初始值

TL0=0xB0;

second_counter++;

if(second_counter>=20){second++;second_counter=0;}

if(second>=60){minute++;second=0;}

if(minute>=60){hour++;minute=0;}

if(hour>=24){hour=0;}

}

/********倒数显示定时器*********/

void Timer1Cofig()

{

TMOD=0x01; //T1定时器工作方式

TH1=0x3C; //定时器初值50ms中断一次

TL1=0xB0;

ET1=1; //定时器开中断

TR1=1; //启动定时器1

EA=1; //CPU开中断总允许

}

/*定时器中断函数*/

void timer1() interrupt 3{

TH1=0x3C; //重新装入初值

TL1=0xB0;

RGY_second++;

if(RGY_second==20){

RGY_second=0;

Time_EW--;//满1秒,数码管值减1

Time_SN--;

}

}

第五章 系统调试与仿真

5.1 proteus仿真结果

根据系统设计要求,进行keil调试和proteus系统仿真,不断调试程序。发光二极管,数码管都能按要求显示,符合要求。proteus总体仿真图如下。

图5.1 仿真结果

基于单片机的十字路口交通信号灯控制系统设计与调试

第一章 控制要求

1.1 控制要求

(1)系统工作受开关控制,起动开关 ON 则系统工作;起动开关 OFF 则系统停止工作。

(2)控制对象有八个:

东西方向红灯两个 , 南北方向红灯两个,

东西方向黄灯两个 , 南北方向黄灯两个,

东西方向绿灯两个 , 南北方向绿灯两个,

东西方向左转弯绿灯两个,南北方向左转弯绿灯两个。

(3)另外东西方向、南北方向各设置显示两位十进制的7段显示器,用来显示倒数计数值。

1)高峰时段按时序图二(见附图)运行, 正常时段按时序图三(见附图)运行,晚上时段按提示警告方式运行,规律为: 东、南、西、北四个黄灯全部闪亮,其余灯全部熄灭。

高峰时段、正常时段及晚上时段的时序分配按时序图一运行(见附图)。

可以只选择高峰时段或正常时段进行设计,但最后评分值最高以良好评议;如果全部功能实现(需要设计一个24小时的时钟作为时段划分的基础),最高评分值以优秀评议。

时序图

第二章 系统方案设计

2.1交通灯运行状态分析

根据控制要求,系统以下图交通的运行状态来设计系统方案。

状态1南北直行;状态2南北左转; 状态3东西直行;状态4东西左转。

共有四种状态,分别设定为S1、S2、S3、S4,交通灯以这四种状态为一个周期。循环执行如图1.5所示:

图2.1 交通灯状态循环图

2.2系统总体方案设计

图2.2系统总体方案图

本系统采用MCS-51系列单片机AT89C51为中心器件来设计交通灯控制器,实现了正常、高峰、晚间时通过单片机的P1口设置红、绿、黄灯亮灭的功能。东西、南北两位7段显示器用来显示倒数计数值。系统分三种工作时段:正常、高峰、晚间,并且通过时间段来控制"正常"、"高峰"、"晚间"相互转化。

正常时段:南北段直行通行(绿灯)、东西段禁止(红灯)40s,同时南北段和东西段方向的数码管分别从40s和70s开始倒计时,至最后5s时南北段绿灯变成黄灯闪烁;此后南北段左转(左转绿灯亮)通行、东西段禁止(红灯)20s,同时南北段和东西段方向的数码管都从20s开始倒计时,至最后5s时南北段左转灯变成黄灯闪烁;再后东西段直行通行(绿灯)、南北段禁止(红灯)40s,同时东西段和南北段方向的数码管分别从40s和70s开始倒计时,至最后5s时东西段绿灯变成黄灯闪烁;最后东西段左转(左转绿灯亮)通行、南北段禁止(红灯)20s,同时东西段和南北段方向的数码管都从20s开始倒计时,至最后5s时东西段左转灯变成黄灯闪烁。

高峰时段:南北段、东西段的通行时间改为45s,左转的时间改为15s,其它与正常时段相同。

晚间时段:禁止左转和直行,东西南北四个方向黄灯闪亮。

第三章 系统电路设计

3.1控制芯片选择

图3.1 AT89C51引脚图

AT89C51是美国ATMEL公司生产的低电压,高性能CMOS 8位单片机,有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个可编程定时计数器,2个全双工串行通信口,2个读写口线,器件采用ATMEL公司的高密度、非易失性存储技术生产,与标准MCS-51指令系统及8051产品引脚兼容,片内置通用8位中央处理器(CPU)和Flash存储单元,可以按照常规方法对其进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。

3.2状态灯选择

该系统设计红、绿、黄状态灯显示的功能,用LED灯来代替实际的交通灯,由于有四种不同的运行状态,一个十字路口需要16个LED灯,倒计时数码管显示选用两位带片选的7段数码管,需要4个。数码管显示简单,程序简单,端口用的少。普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、等电源驱动点亮,它属于电流控制型,使用时需串接合适的限流电阻。

3.3系统硬件原理图设计

图3.2系统原理布置图

第四章 系统软件设计

4.1 程序流程图设计

图4.1主程序流程图

系统通电后,初始化定时器,进行24小时定时,在7:00到8:15或16:30到17:00时,按高峰时段运行。在6:30到7:00或8:15到16;30或18:00到19:00时,按正常时段运行。其余时段,按晚间时段运行。

图4.2 时钟及晚间时段程序流程图

本设计利用单片机的定时器T0中断来设置24小时定时,设置TH1=0x3C,TL1=0xB0.即每0.05秒中断一次。到第20次中断即过了20*0.05秒=1秒时,计60S时,满意1分钟,计满60分钟,满1小时,计满24小时,又重新开始计时。用定时器T1中断来设置数码管倒计时,每满1S时,使时间的计数值减1,便实现了倒计时的功能。

图4.3 高峰时段及正常时段流程图

4.2 系统编程

4.2.1定时器的中断设置

在单片机中,中断技术主要用于实时控制。所谓实时控制,就是要求计算机能及时地响应被控对象提出的分析、计算和控制等请求,使被控对象保持在最佳工作状态,以达到预定的控制效果。由于这些控制参量的请求都是随机发出的,而且要求单片机必须做出快速响应并及时处理,对此,只有靠中断技术才能实现。

本系统中的定时时钟及倒计时的设置和相应中断服务子程序如下:

/*24小时时钟 */

void Timer0Cofig(){

TMOD=0x01; //T0定时器工作方式

TH0=0x3C; //设置初始值,定时50MS

TL0=0xB0;

ET0=1; //定时器开中断

TR0=1; //启动定时器0

EA=1; //CPU开中断总允许

}

void T0int() interrupt 1{

TH0=0x3C; //设置初始值

TL0=0xB0;

second_counter++;

if(second_counter>=20){second++;second_counter=0;}

if(second>=60){minute++;second=0;}

if(minute>=60){hour++;minute=0;}

if(hour>=24){hour=0;}

}

/********倒数显示定时器*********/

void Timer1Cofig()

{

TMOD=0x01; //T1定时器工作方式

TH1=0x3C; //定时器初值50ms中断一次

TL1=0xB0;

ET1=1; //定时器开中断

TR1=1; //启动定时器1

EA=1; //CPU开中断总允许

}

/*定时器中断函数*/

void timer1() interrupt 3{

TH1=0x3C; //重新装入初值

TL1=0xB0;

RGY_second++;

if(RGY_second==20){

RGY_second=0;

Time_EW--;//满1秒,数码管值减1

Time_SN--;

}

}

第五章 系统调试与仿真

5.1 proteus仿真结果

根据系统设计要求,进行keil调试和proteus系统仿真,不断调试程序。发光二极管,数码管都能按要求显示,符合要求。proteus总体仿真图如下。

图5.1 仿真结果

相关问答

单片机 EA 是什么意思?还有ET0和TR0又是什么意思?各位小弟...

[最佳回答]EA总中断开关,如果EA不打开,任何中断都无法执行ET0,在EA打开的前提下,打开T0定时器中断TR0,开始启用T0计数器/定时器EA总中断开关,如果EA不打开,任...

单片机 EA 是什么意思?

EA=effectiveaddressEA引脚表示存取外部程序代码之意,低电平动作,当此引脚接低电平后,系统会取用外部的程序代码(存于外部EPROM中)来执行程序。EA引脚必须...

单片机 EA 的作用-ZOL问答

单片机EA脚功能:单片机EA引脚表示存取外部程序代码之意,低电平动作,当此引脚接低电平后,系统会取用外部的程序代码(存于外部EPROM中)来执行程序。EA引脚必须接...

51 单片机 ,中断 EA ?

看中断标志中断标志如果还是在中断的话则会进行中断你可以进入子程序的时候关中断,子程序结束之后再开中断就解决了看中断标志中断标志如果还是在中断的...

at89s51 单片机 EA 引脚高电平和低电平的区别?

EA=0,程序从片内存储器开始执行。EA=1,程序执行片外存储器程序。EA=0,程序从片内存储器开始执行。EA=1,程序执行片外存储器程序。

it0it1的区别?

IT0=1时,低电平...IT0控制的是外部中断0的触发方式。IT0=0时,低电平触发,IT0=1时,后沿触发IT1控制的是外部中断1的触发方式。IT0=1时,低电平触发,IT1=1时,后...

51 单片机EA 引脚为什么接5V?

EA是外程序存储器访问控制引脚,接高电平时程序计数器访问内部ROM,接低电平时访问外部ROM。51单片机的程序存储器在其内部,所以EA要接5V电源端。需要注意的是...

当使用8031 单片机 时,需要扩展外部程序存储器,此时 EA 应为____...

[最佳回答]当使用8031单片机时,需要扩展外部程序存储器,此时EA应为__0__.3.若PSW.4=0,PSW.3=1,要想把寄存器R0的内容入栈,应使用(D)指令.A.PUSHR0B.PUSH@.....

单片机 烧录是接哪些io口?

单片机烧录通常需要连接到计算机的IO口,主要包括数据线、地址线、控制线和电源线。数据线用于传输数据,地址线用于传输存储器地址,控制线用于传输控制信号,电...

80c51 单片机 的片内,片外存储器如何挑选-ZOL问答

EA’引脚为访问内部和外部程序存储器的选择端。程序存储器ROM:其内部容量4KB,指令可直接访问;当容量不足时,可扩展到片外ROM,此时容量可达到64KB,但此时要注意...

猜你喜欢