产品选型

单片机int 单片机实例分享,自制电感和电容测量仪

小编 2024-11-24 产品选型 23 0

单片机实例分享,自制电感和电容测量仪

电子爱好者进行制作时经常需要绕制电感,而一般的数字万用表通常又没有电感测量挡,所以无法测量绕好的电感的电感量。本文介绍一种用单片机制作的电感和电容测量仪(见图23.1),可以有效地解决这一问题。

测量原理

本测量仪采用谐振法测量电感和电容,其方法是用谐振回路的谐振特性来进行测量,其测量原理可用如图23.2所示的电路进行说明。

图23.1 电感和电容测量仪

测量电感Lx时,配用标准电容C1,用Lx和C1组成谐振回路,测量出回路的谐振频率f即可计算出Lx的电感量;测量电容Cx时,配用标准电感L1,用L1和Cx组成谐振回路,测量出回路的谐振频率f即可计算出Cx的电容量。

上述测量方法也有一个缺陷:当Lx或Cx很小时,谐振频率f会很大,测量比较困难,为此我们可以采用如图23.2所示的改进型电路,分别用L1和C1作“垫底”,降低了测量时的谐振频率。

假设由 L1和C1 组成的谐振回路谐振频率为f1,测量Lx时,Lx和L1串联,测得(L1+Lx)和C1组成的谐振回路谐振频率为f2,则根据下式可计算出Lx的电感量:

Lx=[(f1/f2)2-1]L1

测量Cx时,Cx和C1并联,测得L1和(C1+Cx)组成的谐振回路谐振频率为f2,则可根据下式可计算出Cx的电容量:

Cx=[(f1/f2)2-1]C1

硬件电路

测量仪电路如图23.2所示。电路由LC振荡电路、单片机电路、显示电路等部分组成。

CD4069是6非门CMOS集成电路,其中非门F1、F2和C2、R1、R2等组成两级放大电路。第一级放大电路中,R2是负反馈偏置电阻,将F1输出端的直流电位钳制在VCC/2,使F1工作在线性放大区域。第二级放大电路没有加反馈电阻,直接用第一级放大电路输出的直流电压作偏置电压,以提高放大器的增益。放大电路通过正反馈回路R3、C3与L1、C1谐振电路一起组成正弦波振荡电路,非门F3用于信号整形,把F2输出的正弦波转换成矩形波输入到单片机ATmega8的T1脚,由单片机进行脉冲计数,从而测出LC回路的谐振频率。通过单片机对数据进行计算处理后,由LCD1602液晶屏显示测量结果。

图23.2 测量仪电路原理图

S1为测量转换开关,当S1转向L时测量电感,转向C时测量电容。S2是归0按钮。

LCD1602采用4线制传递数据,只使用了数据端口D4~D7。

当开关S1在电容挡但没有测量电容Cx,或在电感挡并且用短路线代替Lx时,电路的振荡频率约为503kHz,我们把这个频率称为基准频率。测试电容或电感时,被测试元件的电容量或电感量越大,对应的振荡频率越低。当被测电容的电容量为10μF(或电感的电感量为1H)时,对应的振荡频率约为5.03kHz。

电阻R5的阻值控制LCD1602液晶屏的对比度,R5阻值越小,液晶屏对比度越大。LED和LED+是液晶屏背光发光二极管的供电端口。

程序设计

测量仪的电路比较简单,而功能的实现更重要地依赖于程序的设计。程序的设计和优化需要花费更多的精力。

程序由频率测量、测试数据的计算处理、LCD1602液晶屏驱动显示三大部分组成。频率测量部分用定时器T/C1作脉冲计数,定时器T/C2产生测量脉冲频率的闸门时间。这里闸门时间选择0.5s,定时器T/C1累计的脉冲数乘以2即得脉冲频率。闸门时间选择0.5s是为了提高LCD1602显示数据刷新速度,如果闸门时间选1s,则刷新速度偏慢。

测试数据的计算处理部分主要利用前面给的两个公式计算出测量结果,并经过数据预处理后,输出到显示电路显示读数。

LCD1602的数据传输采用4线制,8位数据分两次传送,先传高4位,后传低4位,因为传递的数据量不大,所以你感觉不到4线制速度传输和8线制有什么区别。

安装调试

制作所需元器件的清单见表23.1。

C1、L1要选用精度比较高的元件,有条件的可用万能电桥进行筛选。L1如买不到成品电感也可自制,磁芯用Φ8×10的工字磁芯,用Φ0.42的漆包线绕55.5圈。

安装前先将程序的目标文件写入单片机ATmega8L,熔丝位的设置如图23.3所示。

图23.3 熔丝位的设置

电路板的装配图如图23.4所示。LCD1602的接口排座焊接在电路板上,排针焊接在LCD1602模块上如图23.5所示。

表23.1 元器件清单

图23.4 电路板装配图

安装完成后,用一根USB线将电源接口连到电脑USB插座上,接通测量仪的电源,将S1置于电容挡,测量端不接电容,这时LCD1602第二行显示的是基准频率f1,如图23.6所示。基准频率如果超出503kHz±5kHz的范围,说明L1、C1中有元件误差较大,需进行相应的调整。如果L1是自绕的,出现误差的可能性相对较大,可适当增减其圈数,直至满足要求。

接通电源后,以电容挡为例,虽然我们在测试端并没有接任何电容,但LCD1602第一行显示的电容量读数并不为零,如图23.6所示,我们称其为初始值,这是由基准频率略有漂移造成的。这时如果测量小容量的电容,误差就比较大,当初始值后有“-”号时,测量值是实际值减去了初始值,即读数比实际容量小了。反之,测量值是实际值加上了初始值,即读数比实际容量大了。

对于上述问题,我在程序中也作了考虑,只要在不接测试电容的情况下按一下S2就可以归0了,其实质就是基准频率作了修正,并把修正结果存入EEPROM,掉电后不会丢失。归0后的显示数据如图23.7所示。

电容挡归0后,电感挡就不需要归0了,因为电容挡归0就相当于在电感挡测试端接了一个短路线,等同于电感挡归0(在S1置于电感挡,S2归0时其测试端必须接短路线),分析一下电路就明白了。

图23.5 排针的焊接

如果使用中发现测量误差较大,可通过程序进行修正,具体做法如下:找一个精度高的1000pF电容进行测量,假设读数为950pF,则计算1000/950≈1.05,我们将其称为修正系数,将计算公式Cx=[(f1/f2)2-1]C1改为Cx=[(f1/f2)2-1]C1×1.05,用这个公式计算就能减小测量误差了。为了简化程序中的计算,我采取把程序中的语句“unsigned int C1=1000”改为“unsigned int C1=1050”的方法,效果是一样的。

再找一个精度高的100μH电感进行测量,假设读数为94,则计算100/94≈1.06,把程序中的语句“unsigned char L1=100”改为“unsigned char L1=106”,同样也能减小测量误差。

把重新编译好的目标文件烧写到ATmega8L,再进行测量,精度就提高了。

用本测试仪测量电容的实例如图23.8所示(测量对象分别为240pF云母电容和0.47μF安规电容),测量电感的实例如图23.9所示(测量对象分别为10μH电感和电子节能灯的电感线圈)。

当测量值超过量程时,读数显示“OVE”,测电感时电感测试端不接电感(相当于电感量为无穷大),读数也显示“OVE”。

图23.6 基准频率的测量结果

图23.7 按S2归0后的显示数据

使用这个电感和电容测量仪时有一个问题需要注意,即电感或电容的参数会受测试频率的影响。例如,具有磁芯的电感,由于受磁芯的频率特性影响,不同的测试频率,其结果可能有所不同,用这个测量仪测的数据和用信号源频率为1000Hz的万能电桥测的数据可能会不一致。笔者认为,用更接近实际工作频率的测试频率可以得到比较符合实际的测试结果。由于本测试仪工作频率比较高,不适合测量电解电容器。笔者测量一个10μF的电解电容器,对应测试频率为6.5kHz,读数为6.26μF,误差很大。

图23.8 电容的测量结果

图23.9 电感的测量结果

如何使用8位单片机对16位INT型数据进行操作

在8位单片机中没有16位数的操作指令,所有的int型数据都要通过两个字节分开操作,使用的方法不用,生成的代码也不相同,当然效率也不一样,通过指针对16位数进行操作可以得到高效的代码。

比如通过串行口接收数据,或者从串行的EEPROM中读取的数据,或者从大于8位的A/D读取的数据,由于8位单片机的数据线是8位的,高于8位的数据都要分成两个字节分别读取,然后写入到RAM中去再进行计算,或者把16位的int型数据从RAM中读出再分别把高低字节存到EEPROM或者送到D/A,或者通过串行口发送出去,方法有很多种,下面用多种方法进行实现该操作,这里只演示写入到16位的情况,读取的情况非常相似,不赘述。

(1)使用联合 (union)

typedef union{

unsigned int i;

unsigned char c[2];

}u_int;

unsigned char dH = 0x11, dL=0x22;

unsigned int d;

u_int ud;

ud.c[0] = dH;

ud.c[1] = dL;

d = ud.i;

此时d = 0x1122;

(2) 使用移位指令

数据定义与前面相同

d = ((unsigned int)dH)<8 +="">

或者

d = dH;

d <= 8;="" or:="" d=""><8;>

d |= dL; // or: d = d | dL; 后者编译的代码可能不是最简的

(3)使用指针

unsigned char *cptr;

cptr = (unsigned char*)(&d);

cptr[0] = dH;

cptr[1] = dL;

(4)强制指针类型转换

*((unsigned char*)(&d)) = dH;

*((unsigned char*)(&d)+1) = dL;

((unsigned char*)(&d))[0] = dH;

((unsigned char*)(&d))[1] = dL;

这两种方式看似相同但由Keil编译出的代码是不用的,前都有一次加法运算,而后者没有,后者生成的代码更简洁,这种方式与用联合成生的代码是完全一样的,

在这几种方法中第(1)与第(4)的第二种生成的代码是最乘洁的,是推荐使用的,从软件工程的角度出发,推荐使用方法(1),这样没有强制类型转换,没有用到指针,更不容易出错。从书写的代码来讲,第(4)的第二种方法是最好的,代码简洁而且效率最高,但语法有点儿复杂。

相关问答

单片机 中INTT是什么意思?

在单片机中,INTT通常是指中断标志位(InterruptFlag)。中断标志位是一种用于标记中断事件是否发生的标志,它通常是由硬件或软件设置和清除的。当中断事...在...

int 在c语言中的意思?

int代表的是整数类型。它被用于定义变量的类型。根据程序编译器的不同,整形定义的字节数不同。51类单片机的C语言中,int代表2个byte(16位);如果是32位ARM处...

为什么 int 在51 单片机 上是两字节?

因为这是C51软件规定的。C51规定char是字节,int是字(双字节),long是双字(四个字节)。不同的软件环境规定int的长度是不同的,有的可能是双字节,也有可能...

int 数据类型占多少字节?

int占4个字节。常用单片机,short和int型至少为16位,long型至少为32位,并且short型长度不能超过int型,而int型不能超过long型。这即是说各个类型的变量长度是...

keil中long和 int 的取值范围分别是多少? - 懂得

long型长度是32位。至于int型,取决于你所说的“Keil”。对于KeilMDK开发包,其针对的是32位单片机,int型是32位的;对于Keil51开发包,其针对的是8位单...

int 占多少字节?

不同的语言对int的空间分配方案可能是不同的。对于低级一点语言,比如C语言来说,一个int,即整数所占据的字节数,是由编译器来决定的,比如16位编译器它占2个字...

单片机 中断中 int 是什么意思?

在单片机中断中,int代表中断标志位。当外部事件发生时,单片机会检测到中断标志位的状态并跳转到中断服务程序中执行相应的操作。中断标志位可以被硬件或软件设...

int 整型几个字节?

int占4个字节。常用单片机,short和int型至少为16位,long型至少为32位,并且short型长度不能超过int型,而int型不能超过long型。这即是说各个类型的变量长度...

如何使用8位 单片机 对16位 INT 型数据进行操作?

在入门单片机时,想必大家都都会遇到一下这种情况。如何把两个8位数据和在一起变成16位数据呢?一般情况下大家都会这样做,我最初是也是这么做的。方法1【...

int 型数据占几位?

依据程序编译器的不同,int定义的字节数不同。(数据占用内存储器的大小不同)常用的单片机编译器,如KEIL下,51类单片机的C语言中,int代表2个字节(16位)。...依...

猜你喜欢