基于51单片机的电子时钟!内附开题报告模板、论文模板
1)设计AT89S51的最小系统;
2)LED显示电路及与AT89S51接口,LED数码块显示时、分、秒;
3)时钟调整电路及与AT89S51接口;
4)电子时钟程序设计;
5)基于Proteus的电子时钟原理及仿真实现;
6)电子时钟实物制作;
2 总体方案设计
2.1 实现时钟计时的基本方法
利用MCS-51系列单片机的可编程定时/计数器、中断系统来实现时钟计数。
(1) 计数初值计算:
把定时器设为工作方式1,定时时间为50ms,则计数溢出20次即得时钟计时最小单位秒,而100次计数可用软件方法实现。
假设使用T/C0,方式1,50ms定时,fosc=12MHz。
则初值X满足(216-X)×1/12MHz×12μs =50000μs
X=15536→0011110010110000→3CB0H
(2) 采用中断方式进行溢出次数累计,计满20次为秒计时(1秒);
(3) 从秒到分和从分到时的计时是通过累加和数值比较实现。
2.2 电子钟的时间显示
电子钟的时钟时间在六位数码管上进行显示,因此,在内部RAM中设置显示缓冲区共8个单元。
LED8 LED7 LED6 LED5 LED4 LED3 LED2 LED1
37H 36H 35H 34H 33H 32H 31H 30H
时十位 时个位 分隔 分十位 分个位 分隔 秒十位 秒个位
2.3 电子钟的时间调整
电子钟设置3个按键通过程序控制来完成电子钟的时间调整。
reset键复位
hour键调整时;
min键调整分;
2.4 总体方案介绍
2.4.1 计时方案
利用AT89S51单片机内部的定时/计数器进行中断时,配合软件延时实现时、分、秒的计时。
2.4.2 控制方案
AT89S51的P0口和P2口外接由八个LED数码管(LED8~LED1)构成的显示器,用P0口作LED的段码输出口,P2口作八个LED数码管的位控输出线,P1口外接四个按键reset、hour、min构成键盘电路。
3 系统硬件电路设计
根据以上的电子时钟的设计要求可以分为以下的几个硬件电路模块:单片机模块、数码显示模块与按键模块
3.1单片机模块设计
3.1.1 芯片分析
AT89C51单片机引脚图如下:
MCS-51单片机是标准的40引脚双列直插式集成电路芯片,其各引脚功能如下:
VCC:+5V电源。
VSS:接地。
RST:复位信号。当输入的复位信号延续两个机器周期以上的高电平时即为有效,用完成单片机的复位初始化操作。
XTAL1和XTAL2:外接晶体引线端。当使用芯片内部时钟时,此二引线端用于外接石英晶体和微调电容;当使用外部时钟时,用于接外部时钟脉冲信号。
P0口:P0口为一个8位漏极开路双向I/O口,当作输出口使用时,必须接上拉电阻才能有高电平输出;当作输入口使用时,必须先向电路中的锁存器写入“1”,使FET截止,以避免锁存器为“0”状态时对引脚读入的干扰。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,它不再需要多路转接电路MUX;因此它作为输出口使用时,无需再外接上拉电阻,当作为输入口使用时,同样也需先向其锁存器写“1”,使输出驱动电路的FET截止。
P2口:P2口电路比P1口电路多了一个多路转接电路MUX,这又正好与P0口一样。P2口可以作为通用的I/O口使用,这时多路转接电路开关倒向锁丰存器Q端。
P3口:P3口特点在于,为适应引脚信号第二功能的需要,增加了第二功能控制逻辑。当作为I/O口使用时,第二功能信号引线应保持高电平,与非门开通,以维持从锁存器到输出端数据输出通路的畅通。当输出第二功能信号时,该位应应置“1”,使与非门对第二功能信号的输出是畅通的,从而实现第二功能信号的输出,具体第二功能如表1所示。
3.1.2 晶振电路
右图所示为时钟电路原理图,在AT89S51芯片内部有一个高增益反相放大器,其输入端为芯片引脚XTAL1,输出端为引脚XTAL2。而在芯片内部,XTAL1和XTAL2之间跨接晶体振荡器和微调电容,从而构成一个稳定的自激振荡器。时钟电路产生的振荡脉冲经过触发器进行二分频之后,才成为单片机的时钟脉冲信号。
3.1.3 复位电路
单片机复位的条件是:必须使RST/VPD 或RST引(9)加上持续两个机器周期(即24个振荡周期)的高电平。例如,若时钟频率为12 MHz,每机器周期为1μs,则只需2μs以上时间的高电平,在RST引脚出现高电平后的第二个机器周期执行复位。单片机常见的复位如图所示。电路为上电复位电路,它是利用电容充电来实现的。在接电瞬间,RESET端的电位与VCC相同,随着充电电流的减少,RESET的电位逐渐下降。只要保证RESET为高电平的时间大于两个机器周期,便能正常复位。该电路除具有上电复位功能外,若要复位,只需按图中的RESET键,此时电源VCC经电阻R1、R2分压,在RESET端产生一个复位高电平。
3.2 数码显示模块设计
系统采用动态显示方式,用P0口来控制LED数码管的段控线,而用P2口来控制其位控线。动态显示通常都是采用动态扫描的方法进行显示,即循环点亮每一个数码管,这样虽然在任何时刻都只有一位数码管被点亮,但由于人眼存在视觉残留效应,只要每位数码管间隔时间足够短,就可以给人以同时显示的感觉。
3.3 按键模块
下图为按键模块电路原理图,reset为复位键,hour为时钟调控键,min为分钟调控键。
4、系统软件设计
4.1 软件设计分析
在编程上,首先进行了初始化,定义程序的的入口地址以及中断的入口地址,在主程序开始定义了一组固定单元用来储存计数的时.分.秒,在显示初值之后,进入主循环。在主程序中,对不同的按键进行扫描,实现秒表,时间调整,复位清零等功能,系统总流程图如下图7:
图 7 系统总体流程图
4.2 源程序清单
ORG 0000H
MOV 30H,#1 设置时钟的起始时间12.00.00,分配显示数据内存
MOV 31H,#2
MOV 32H,#0
MOV 33H,#0
MOV 34H,#0
MOV 35H,#0
MOV TMOD,#01 启动计数器
XS0: SETB TR0 使 TRO位置1
MOV TH0,#00H 计数器置零
MOV TL0,#00H
XS:
MOV 40H,#0FEH 扫描控制字初值
MOV DPTR,#TAB 取段码表地址
MOV P2,40H 从P2口输出
MOV A,30H 取显示数据到A
MOVC A,@A+DPTR 查显示数据对应段码
MOV P0,A 段码放入P0中
LCALL YS1MS 显示1MS
MOV P0,#0FFH PO端口清零
MOV A,40H 取扫描控制字放入A中
RL A A中数据循环左移
MOV 40H,A 放回40H地址段内
MOV P2,40H
MOV A,31H
ADD A,#10 进位显示
MOVC A,@A+DPTR
MOV P0,A
LCALL YS1MS
MOV P0,#0FFH
MOV A,40H
RL A
MOV 40H,A
MOV P2,40H
MOV A,32H
MOVC A,@A+DPTR
MOV P0,A
LCALL YS1MS
MOV P0,#0FFH
MOV A,40H
RL A
MOV 40H,A
MOV P2,40H
MOV A,33H
ADD A,#10
MOVC A,@A+DPTR
MOV P0,A
LCALL YS1MS
MOV P0,#0FFH
MOV A,40H
RL A
MOV 40H,A
MOV P2,40H
MOV A,34H
MOVC A,@A+DPTR
MOV P0,A
LCALL YS1MS
MOV P0,#0FFH
MOV A,40H
RL A
MOV 40H,A
MOV P2,40H
MOV A,35H
MOVC A,@A+DPTR
MOV P0,A
LCALL YS1MS
MOV P0,#0FFH
MOV A,40H
RL A
MOV 40H,A
JB TF0,JIA 如果TF0为1时,则执行JIA,否则顺序执行
JNB P1.0,P100 为0则 转移到P100
JNB P1.1,P1000 为0则 转移到P1000
JNB P1.2,P10000 为0则 转移到P10000
AJMP XS 跳转到 XS
P100: MOV 30H,#0 清零程序
MOV 31H,#0
MOV 32H,#0
MOV 33H,#0
MOV 34H,#0
MOV 35H,#0
JIA: CLR TF0 TF0清零
MOV A,35H 秒单位数据到A
CJNE A,#9,JIA1 与 9进行比较,大于9就转移到JIA1
MOV 35H,0 秒个位清零
MOV A,34H 秒十位数据到A
CJNE A,#5,JIA10 与5进行比较,大于5就转移到JIA10
MOV 34H,#0 秒十位清零
P10000: JNB P1.2,P10000 为0则 转移到P10000
MOV A,33H 取分的个位到A
CJNE A,#9,JIA100 与 9进行比较,大于9就转移到JIA100
MOV 33H,#0 分的个位清零
MOV A,32H 分十位数据到A
CJNE A,#5,JIA1000 与5进行比较,大于5就转移到JIA1000
MOV 32H,#0 分的十位清零
P1000: JNB P1.1,P1000 为0则 转移到P1000
MOV A,31H 时个位数据到A
CJNE A,#9,JIA10000 与 9进行比较,大于9就转移到JIA10000
MOV 31H,#0 时的个位清零
MOV A,30H 时十位数据到A
CJNE A,#2,JIA100000 与2进行比较,大于5就转移到JIA100000
MOV 30H,#0 时的十位清零
AJMP XS0 转移到 XSO
JIA100000:
INC 30H 加1
AJMP XS0 跳转到 XS0
JIA10000:
CJNE A,#3,JIAJIA 与3进行比较,大于则转移到JIAJIA
MOV A,30H 将时的十位放到 A
CJNE A,#02,JIAJIA 与2进行比较,大于则转移到JIAJIA
MOV 30H,#0 时段清零
MOV 31H,#0
AJMP XS0 跳转到XSO
JIAJIA:
INC 31H 加一
AJMP XS0
JIA1000:INC 32H
AJMP XS0
JIA100: INC 33H
AJMP XS0
JIA10: INC 34H
AJMP XS0
JIA1: INC 35H
AJMP XS0
RET 返回
YS1MS: MOV R6,#9H 延时程序
YL1: MOV R7,#19H
DJNZ R7,$
DJNZ R6,YL1
RET
TAB:
DB 0C0H,0F9H,0A4H,0B0H,099H,092H,082H,0F8H,080H,090H 共阳段码表
DB 040H,079H,024H,030H,019H,012H,002H,078H,000H,010H
END
5 系统仿真与实验测试
5.1 系统仿真
运用proteus软件进行仿真现在proteus软件中建立一个新的文件,再根据自己的要求选择所需的器件,把器件进行适当的排位后进行连接,连接后运行软件进行仿真。
5.2 实验测试
电子时钟主要的设计要求是能够实现时钟的一般功能,以及包括时间的调整功能,这个基于单片机的电子时钟基本上实现了上述功能,能够通过时间调整电路对时间进行调整以及复位。
6 心得体会
单片机作为我们主要的专业课程之一,我觉得单片机课程设计很有必要,而且很有意义。但当拿到题目时,确实不知道怎么着手,有些迷茫,上网查资料,问老师,在老师的帮助下,历时两个星期,解决一个又一个的困难,终于完成任务。
在这次课程设计中,运用到了很多以前的专业知识,虽然过去从未独立应用过它们,但在学习的过程中带着问题去学我发现效率很高,这是我做这次课程设计的一大收获。另外,要做好一个课程设计,就必须做到:在设计程序之前,对所用单片机的内部结构有一个系统的了解,知道该单片机内有哪些资源;要有一个清晰的思路和一个完整的的软件流程图;在设计程序时,不能妄想一次就将整个程序设计好,反复修改、不断改进是程序设计的必经之路;要养成注释程序的好习惯,一个程序的完美与否不仅仅是实现功能,而应该让人一看就能明白你的思路,这样也为资料的保存和交流提供了方便;在设计课程过程中遇到问题是很正常德,但我们应该将每次遇到的问题记录下来,并分析清楚,以免下次再碰到同样的问题的课程设计结束了,但是从中学到的知识会让我受益终身。发现、提出、分析、解决问题和实践能力的提高都会受益于我在以后的学习、工作和生活中。设计过程,好比是我们人类成长的历程,常有一些不如意,但毕竟这是第一次做,难免会遇到各种各样的问题。在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,不能灵活运用。
通过这次设计,我懂得了学习的重要性,了解到理论知识与实践相结合的重要意义,学会了坚持、耐心和努力,这将为自己今后的学习和工作做出了最好的榜样。另外,要非常感谢我的指导老师,是她指引我克服一个由一个的困难,让我学会对困难无所畏惧,以及对问题的一些很重要的思考方法。
我学会对困难无所畏惧,以及对问题的一些很重要的思考方法。
附录
附录1 硬件电路总图
三总线的扩展设计方法
基本思路
51系列单片机采用总线结构,使扩展易于实现,其扩展结构如图4-3所示。
图4-3 AT89S51单片机系统扩展结构图
由图4-3可以看出,系统扩展主要包括存储器扩展和I/O接口部件扩展。51系列单片机的存储器扩展既包括程序存储器扩展又包括数据存储器扩展。51系列单片机采用程序存储器空间和数据存储器空间截然分开的哈佛结构。扩展后,系统形成了两个并行的外部存储器空间。系统扩展是以51单片机为核心,通过总线把单片机与各扩展部件连接起来。因此,要进行系统扩展,首先要构造系统总线。系统总线按功能通常分为3组,如图4-3所示。
51单片机有4个8位的并行口,已占用了32条引线,而51单片机总共只有40条引脚,这8根数据线和16根地址线必须采用引脚复用的方法,也就是一根引脚必须有两种或更多种功能才能满足需要,某一根引脚究竟作何用,则需要根据硬件的要求进行设计,从而使用其不同的功能。
如何构造系统的三总线
1. 数据总线
如图4-4所示为单片机的三总线结构形式。51单片机的P0口是一个多功能口,如果扩展外围芯片,P0口就可以作为数据总线和低8位的地址总线来使用。CPU先从P0口送出低8位地址,然后从P0口送出数据或接收数据。
图4-4 单片机的三总线结构形式
2. 地址总线
在51单片机访问外部存储器或I/O口时,可能需要超过8位的地址线,这时就用P2作为高8位的地址线。在P0口出现低8位地址信号时,P2口也出现高8位的地址线,这样共有16根地址线。
3. 控制总线
除地址线和数据线外,还要有系统的控制总线。这些信号有的是单片机引脚的第一功能信号,有的则是P3口第二功能信号。包括:
(1)作为外扩程序存储器的读选通控制信号。
(2)作为外扩数据存储器和I/O的读、写选通控制信号。
(3)ALE作为P0口发出的低8位地址锁存控制信号。
(4)为片内、片外程序存储器的选择控制信号。
可见,AT89S51的4个并行I/O口,由于系统扩展的需要,真正作为数字I/O使用,就剩下P1和P3的部分口线了。
4. 地址、数据分离电路
单片机的P0口作为数据总线和低8位的地址总线使用,如果直接将P0口接到扩展芯片的数据总线和低8位地址线是行不通的,例如,单片机选定了外部存储器的0000H单元,P0、P2口就应当输出00H,这样才能选中0000H单元,在选中0000H单元后,就从这个单元读取数据,这个数据的值是随机的,假设这个数据是10H,P0口就变成了10,但这样就不再是选中0000H单元,而是选中了0010H单元,显然,这从逻辑上是讲不通的,所以P0口送出地址和接收或更新出数据是分时进行的,一定要把地址和数据区分开。
如图4-5所示是P0口的地址/数据复用关系,从图中可以看出,在每一个周期里,P2口始终是输出高8位的地址信号,而P0口却被分成两个时段,第一个时段输出低8位的地址,而第二个时段则是传输数据,为了要把低8位的地址信号提取出来,要用到一个锁存器芯片。从图4-5中还可以看出,在ALE的上升沿到来时,P0口是处于“浮空”状态,也说“高阻”状态,即构成P0口输出的两个晶体管均处于“截止”的状态,这样不会影响到锁存器。ALE信号就是MCS-51单片机提供的专用于数据/地址分离的一个引脚。
图4-5 P0口地址、数据复用示意图
对于片外数据存储器,单片机使用了与访问片内数据存储器不同的指令进行访问。此外,如果扩展了其他连接如I/O等芯片,也要占用RAM空间。
相关问答
【 单片机 试卷的几道题(求大神解答)选择:1.一个 单片机 应用系...[最佳回答]A、硬件去抖动B、软件去抖动C、硬、软件两种方法D、单稳态电路去抖动方法判断:1、AT89S51单片机只有2个外部中断源。(T)2、51系列单片机只有2...
80c51单片机和at 89s51单片机 的区别?它们之间主要区别在于以下几点:1.引脚功能引脚几乎相同,改变是,在AT89S51P1.5中,P1.6,P1.7具有第二功能,即这三个引脚的第二功能构成一个串行ISP编程接...
80c 51单片机 和AT 89S 52单片机的区别?51单片机和52单片机区别:1、种类不同:51系列单片机是指51内核,stc89c5X基本都是51内核的种类。2、大小不同:最后一个数字表示E2prom的大小,E2prom=X*4K,c...
51单片机 设置时钟带日期a.用AT 89S51单片机 的定时/计数器T0产...[最佳回答]要实物还是仿真呢我做单片机的
at 89s51单片机 有多少组?at89s51单片机有4组。AT89S51有PDIP、PLCC、TQFP三种封装方式,其中最常见的就是采用40Pin封装的双列直接PDIP封装。芯片共有40个引脚,引脚的排列顺序为从靠...
AT 89S51单片机 的在线编程是什么意思?AT89C51怎么编程?在线编程,就是在目标板上直接编程(或者产品板),就是方便修改。AT89C51没有这个功能。在线编程,就是在目标板上直接编程(或者产品板),就是方便修改。AT89C5...
我的 单片机 是stc 89 c51 ,用keil建工程时选的也是此型号,但是烧...STC系列单片机,型号有STC89C51RC、STC89C52RC、STC89C53RC、等等。STC系列单片机用STC-ISP软件下载程序,如果选择错误就会显示MCU型号不对。下载时只是...
89s51单片机 高电平能驱动LED吗?高电平和低电平各是什么范围?不外接上拉电阻时也可以驱动,通过设置IO口的模式为强推挽输出,其输出电流可达20mA,不过手册建议整个芯片电流不超过55mA。一般外接上拉电阻来驱动LED。对于工...
at 89s51单片机 为什么位单片机?AT89S51是一个低功耗,高性能CMOS8位单片机,片内含4kBytesISP(In-systemprogrammable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATME...
简述 89s51单片机 中断响应过程?本质上是轮询,中断信号触发中断请求,cpu查询到中断请求之后根据当前中断寄存器配置决定是否进行中断响应。但是一般情况下的轮询是程序设定固定周期让cpu进行...