非常好的单片机复位电路
一、概述影响单片机系统运行稳定性的因素可大体分为外因和内因两部分:
1、外因
射频干扰,它是以空间电磁场的形式传递 在机器内部的导体(引线或零件引脚)感生出相应的干扰,可通过电磁屏蔽和合理的布线/器件布局衰减该类干扰;
电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦合或直接传导,可通过电源滤波、隔离等措施来衰减该类干扰。
2、内因
振荡源的稳定性,主要由起振时间 频率稳定度和占空比稳定度决定 起振时间可由电路参数整定 稳定度受振荡器类型 温度和电压等参数影响复位电路的可靠性。
二、复位电路的可靠性设计1、基本复位电路
复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开
关 或电源插头分-合过程中引起的抖动而影响复位。图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。但解决不了电源毛刺(A点)和电源 缓慢下降(电池电压不足)等问题 而且调整 RC 常数改变延时会令驱动能力变差。左边的电路为高电平复位有效右边为低电平Sm为手动复位开关Ch可避免高频谐波对电路的干扰
图1 RC复位电路
图2所示的复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电,一定宽度的电源毛刺也可令系统可靠复位。 图3所示复位电路输入输出特性图的下半部分是其特性,可与上半部比较增加放电回路的效果
图2 增加放电回路的RC复位电路
使 用比较电路,不但可以解决电源毛刺造成系统不稳定,而且电源缓慢下降也能可靠复位。图4 是一个实例 当 VCC x (R1/(R1+R2) ) =0.7V时,Q1截止使系统复位。Q1的放大作用也能改善电路的负载特性,但跳变门槛电压 Vt 受 VCC影响是该电路的突出缺点,使用稳压二极管可使 Vt 基本不受VCC影响。见图5,当VCC低于Vt(Vz+0.7V)时电路令系统复位。
图3 RC复位电路输入-输出特性
图4带电压监控功能的复位电路
图5 稳定门槛电压
图6实用的复位监控电路
在此基础上,增加延时电容和放电二极管构成性能优良的复位电路,如图6所示。调节C1可调整延时时间,调节R1可调整负载特性,如图7所示上半部分是图5电路的特性,下半部分对应图6。
图7 带电压监控功能的复位电路的输入-输出特性
2、电源监控电路
上述的带电压监控的复位电路又叫电源监控电路 监控电路必须具备如下功能:
上 电复位,保障上电时能正确地启动系统;掉电复位,当电源失效或电压降到某一电压值以下时,复位系统;市面上有类似的集成产品,如PHILIPS半导体公司 生产的MAX809、MAX810。此类产品体积小、功耗低,而且可选门槛电压。可保障系统在不同的异常条件下可靠地复位,防止系统失控。图8中的Rm和 Sm实现手动复位 无需该功能时可把Reset端(或/Reset)端直接与单片机的RST端(或/RST端)相连 最大限度地简化外围电路 也可选择PHILIPS半导体公司带手动复位功能的产品MAX708。
图8集成复位监控电路
此外,MAX708还可以监视第二个电源信号,为处理器提供电压跌落的预警功能,利用此功能,系统可在电源跌落时到复位前执行某些安全操作,保存参数,发送 警报信号或切换后备电池等。图9电表的应用实例 利用MAX708 电表可在电源毛刺或停电前把当前电度数保存到E2PROM中再配合保存多个电度数备份算法,可有效解决令工程师头疼E2PROM中的电度数掉失问题使用该 电路必须选择适当的预警电压点,以保证靠电源的储能供电情况下,VCC电压从预警电压跌到复位电压的维持时间(tB)必须足够长 E2PROM的写周期约为10-20ms一般取tB>200ms就可确保数据稳定写入。预警电压调整方法 当VDC等于预警电压时调整R1和R2使PFI的电压为1.25V此时可检测/PFO来确认内部的电压比较器是否动作,调整时必须注意此比较器是窗口比较 器。 图10是该应用的程序流程图
图9 MAX708的典型应用
图10. 电表应用中E2PROM数据保护程序流程图
3.多功能电源监控电路
除上电复位和掉电复位外,很多监控电路集成了系统所需的功能,如:
电源测控,供电电压出现异常时提供预警指示或中断请求信号,方便系统实现异常处理;数据保护,当电源或系统工作异常时,对数据进行必要的保护,如写保护、数 据备份或切换后备电池;看门狗定时器,当系统程序“跑飞”或“死锁”时,复位系统;其它的功能,如温度测控、短路测试等等。
我们把其称作多功能电源监控电路。下面介绍两款特别适合在工控、安防、金融行业中广泛应用多功能的监控电路:
Catalyst 公司的 CAT1161 是一个集成了开门狗、电压监控和复位电路的 16K 位 E2PROM(I2C接口)不但集成度高、功耗低(E2PROM部分静态时真正实现零功耗)而且清看门狗是通过改变SDA的电平实现的,节省系统I/O资 源,其门槛电压可通过编程器修改,该修改范围覆盖绝大多数应用。当电源下降到门槛电压以下时 硬件禁止访问 E2PROM 确保数据安全。
使用时注意的是 RST,/RST 引脚是 I/O 脚,CAT1161 检测到两引脚中任何一个电压异常都会产生复位信号,与 RST /RST引脚相连的下拉电阻 R2 和上拉电阻 R1 必须同时连接,否则CAT1161将不断产生复位!同样不需要手动复位功能时可节省Rm和Sm两个元件。
图11.内置WDT RESET /RESET E PROM监控器件接口电路
PHILIPS 公司的 SA56600-42 被设计用在电源电压降低或断电时作保护微电脑系统中SRAM 的数据。当电源电压下降到通常值4.2V 时,输出 CS 变为逻辑低电平,把 CE 也拉低,从而禁止对 SRAM的操作。同时,产生一个低电平有效的复位信号,供系统使用,如果电源电压继续下降,到达通常值3.3V或更低时,SA56600-42切换系统操 作,从主电源供电切换到后备锂电池供电,当主电源恢复正常(电压上升至3.3V或更高时)将SRAM的供电电源将由后备锂电池切换回主电源,当主电源上升 至大于典型值4.2V 时 输出 CS 变为逻辑高电平,使 CE 变为高电平,使能 SRAM的操作,复位信号一直持续到系统恢复正常操作为止。在系统电源电压不足或突然断电的时候,这个器件能可靠地保护系统在SRAM内的数据。
图12.内置SRAM数据保护电路的监控器件SA56600-42的典型应用
4. ARM 单片机的复位电路设计
无论在移动电话 高端手持仪器还是嵌入式系统,32位 单片机 ARM 占据越来越多的份额,ARM 已成为事实的高端产品工业标准。由于 ARM 高速、低功耗、低工作电压导致其噪声容限低这是对数字电路极限的挑战,对电源的纹波、瞬态响应性能、时钟源的稳定度、电源监控可靠性等诸多方面也提出了更 高的要求。ARM监控技术是复杂并且非常重要的。
分 立元件实现的监控电路,受温度、湿度、压力等外界的影响大而且对不同元件影响不一致较大板面积,过多过长的引脚容易引入射频干扰,功耗大也是很多应用难以 接受,而集成电路能很好的解决此类问题。目前也有不少微处理器中集成监控电路,处于制造成本和工艺技术原因,此类监控电路大多数是用低电压CMOS工艺实 现的,比起用高电压、高线性度的双极工艺制造的专用监控电路 性能还有一段差距。
结论是:使用 ARM而不用专用监控电路,可能导致得不偿失,经验也告诉我们使用专用监控电路可以避免很多离奇古怪的问题。ARM的应用工程师,切记少走弯路!
图13.用PHILIPS MAX708实现的ARM复位电路
图13 是实用可靠的 ARM 复位电路。ARM 内核的工作电压较低。R1 可保证电压低于 MAX708 的工作电源还能可靠复位。其中 TRST信号是给 JTAG 接口用的。使用 HC125 可实现多种复位源对 ARM 复位,如通过PC机串口或JTAG接口复位ARM。
GPIO应用汇总(建议收藏)
GPIO是什么?
字面意思看,GPIO=General Purpose Input Output,通用输入输出。有时候简称为“IO口”。通用,就是说它是万金油,干什么都行。输入输出,就是说既能当输入口使用,又能当输出口使用。端口,就是元器件上的一个引脚。怎么用?写软件控制。
总结:GPIO就是芯片上的一根干啥都行的引脚。
讲了这么多,相信不懂的人还是一头雾水,咱们对着案例看看GPIO怎么用至于上拉、下拉、悬空、高阻、开漏、推挽之类的概念,可以以后再慢慢琢磨。
01GPIO的简单用法
输出控制信号
GPIO控制LED灯的开关
GPIO用来做开关控制,是最常见的应用场景。
如上图,P21这个GPIO口,输出1的时候,LED403点亮,输出0或者没有输出的时候,LED403熄灭。
GPIO口是怎么被控制的呢?通过软件代码。需要亮灯的时候调用GPIO口拉高的函数,需要熄灯的时候调用GPIO拉低的函数,即可实现控制。函数的操作,最终变成了向这个GPIO的硬件寄存器写入数据,硬件的状态会跟随寄存器的数据改变而改变。
硬件寄存器在这里可以理解为一个电子开关,好比你告诉家里的保姆说“去吧客厅的灯关上”,他就走过去按动灯的开关,然后灯就灭了。你下的这个指令的动作相当于调用了GPIO操作的函数,保姆去按开关这个动作相当于函数配置寄存器。
当然你也可以直接去按这个开关(直接操作寄存器),这个做法虽然能工作,但是在代码设计中是不符合规范的。后续修改中很容易导致误操作。实际操作中需要预先初始化,配置GPIO的参数,把寄存器建立接口给其他进程调用等软件类的操作,这里就不详述了。
输入中断信号
重力传感器输出中断信号给MCU的GPIO口
G-sensor,也叫做重力传感器/加速度传感器/运动传感器,检测设备是否在运动的。咱们平时用的蓝牙手环的计步器主要就是根据G-sensor采样回来的运动数据计算而来的。
设备不动的时候,G-sensor和MCU都是休眠状态以节省电量。
设备动一动,G-sensor感受到了就被唤醒了,就往中断口上(GSENSOR_INT)发一个高电平信号,MCU感受到这个中断口的电平从低变成高了,就退出休眠开始正常运行。
然后MCU就通过I2C数据接口读取G-sensor里的数据。
如何理解中断呢?你正在睡觉,突然有人来找你,他就要先把你摇醒才行。这就是把你的睡眠中断了,让你从睡眠中被唤醒(如同上述例子)。
同样,如果你正在看电影,突然手机铃声响了,一看是女朋友来电话了,就要把电影暂停,保留电影当前的播放位置,然后去接女朋友的电话。接完了电话,再继续从之前的播放位置开始播放。
这个电话就是中断信号,保存电影位置就是中断响应前的状态入栈,接电话的过程就是中断服务程序,挂了电话继续播放就是中断的状态出栈。
可能有人会说,为什么多此一举,G-sensor不能直接把数据发送给MCU么?这是因为I2C只能由主设备主动发起数据传输的请求,从设备是不能主动发送数据的(只能任由主设备过来读取数据)。关于I2C协议的内容,请见相关文章。
但凡I2C接口且持续工作的设备,都需要有一个中断输出,用来告诉主机“我已经准备好数据了,你快点过来取走吧”。
用GPIO做中断,还需要特别特别注意一条:如果选择这个中断口来唤醒系统,那一定要对照芯片规格书看清楚,选择的中断口能不能唤醒系统?
对于大部分单片机,几乎每一个中断口都可以唤醒系统,但对于高主频的处理器,如手机和平板电脑的,并不是所有的GPIO都可以配置成中断,也不是所有的中断都能唤醒系统。
如果选择了一个不能唤醒系统的中断口做上述示例,一旦MCU进入休眠,外设就失效了。
用作按键输入
GPIO做按键检测
按键严格来讲也是个中断。GPIO口默认状态是低电平,按键按下后被拉到高电平,此时系统能够检测到中断,判定为按键按下。
等到按键释放了,GPIO口检测到电压回归低电平,就判定为按键松开了。这种做法是单片机上比较常见的做法。在智能一些的硬件平台上,往往会有独立的硬件按键接口(非GPIO口),在芯片内部加入按键控制器,通过硬件实现按键的去抖、双击和长按判断。
对于单片机,一旦被按键触发之后,内部就开始跑程序,每隔几个毫秒读取一次按键状态,判断按键是否被释放。通过软件实现去抖、双击和长按的功能。
图上的电容,用处是滤除外部干扰,避免被误触发,同时起到一定的按键去抖作用。图上的TVS管,是为了防止静电进入CPU。
可能会有人问,按键按下就是按下了,为什么会抖动?
因为按键都是机械式的,两个金属片在接触的瞬间,从微秒级的时间段来看,会存在接触-断开-再接触这样的轻微的抖动。直到两个金属片牢牢的接触到一起之后,抖动才会消失。所谓按键去抖动,就是通过延时来消除掉接触再断开这种异常状态的。
如果GPIO口不够,但是需要做多个按键的检测,也可以把按键配置成为ADC,通过不同按键产生不同的电压,来利用一个ADC口检测到不同的键值。这个做法通常用于手机3.5mm有线耳机上的3个按键的检测。
02GPIO的高阶应用
GPIO除了简单的输入输出之外,还可以做一些相对复杂的操作,例如模拟I2C或SPI数据线、ADC电压检测、输出PWM波形等。
这些功能有些可以直接配置成硬件接口,也可以通过软件来模拟波形。
用作I2C接口
GPIO用作I2C数据总线
I2C时序图
I2C是智能硬件电路上最常用的数据传输总线,只需要2根线,就能够挂载多个从设备,能够双向传输,最大速度可达400Kbps,非常适合传输控制指令和小量数据。
平时大家用的G-sensor传感器、光距离传感器、电容触摸屏、LED灯控制器、摄像头的控制命令等,几乎都是I2C接口的。
GPIO口用作I2C,算是GPIO传数据的最常用的方式。如果芯片内部自带I2C控制器,可以直接配置GPIO切换到硬件I2C上。例如单片机几乎都可以这么做。
如果芯片内部的I2C接口不够用,还可以通过软件控制GPIO口拉高拉低来模拟I2C的波形和时序,照样可以当作I2C使用。
同样的模拟数据线的做法,还可以用GPIO来模拟SPI。只要是带时钟的低速同步数据线,都可以用GPIO口来模拟。
但是GPIO口不能用来模拟UART串口。因为UART没有时钟线,需要非常精准的按照约定的时间间隔输出波形,软件定时器不准,硬件定时器占用系统资源多,所以很难实现。
PWM输出
GPIO输出PWM波控制蜂鸣片
不同占空比的PWM波形
GPIO口输出PWM波,跟当作I2C使用的性质上是一样的。控制GPIO口 定时拉高拉低,就可以输出PWM波形。
如上图,就是通过PWM来控制外部升压电路,驱动蜂鸣片发出声音的。PWM还可以用于控制LED灯的调光,改变PWM输出的占空比,调节灯光亮度
ADC采样
GPIO用作ADC采样,采集电池电压
电池分压后给ADC采样
ADC,Analog-to-Digital Converter,把模拟信号转换成数字信号。ADC的应用范围很广,麦克风音频数据的采样、电压电流信号的采样、模拟传感器输出的数据的量化等。
受限于精度、量程、采样速度等,GPIO的ADC一般不做太复杂的应用,大部分时候只做电压采集。
如上图,把GPIO口配置成为ADC模式,采集电池电压,用于做电池电量显示。这个做法只适合做简单的电池电压显示,如果要做类似智能手机的百分之一精度的电池电量管理,还需要外加更高精度的ADC和电池补偿算法。
GPIO做ADC,最常遇到的问题是:
一,不是所有的GPIO口可以做ADC使用,一定要看清楚规格书!
二,ADC有电压域限制的,3V供电的ADC测量不到超过3V的电压。例如上面第一张图,MCU用3V电池供电,此时GPIO/ADC的供电电压是3V,最大量程也是3V,可以测量到电池电压。而第二张图锂离子电池电压是4.2V,MCU供电是3V,GPIO/ADC工作电压也是3V,就量不到这么高的电压了。超出量程测量出来的都是一样的。因此利用电阻分压,把4.2V的电池电压折半降低到2.1V,给3V量程的ADC使用。
相关问答
单片机 能焊坏吗?单片机在正常使用情况下是不会焊坏的。单片机是通过焊接连接到电路板上的,焊接是一种可靠的连接方式。然而,如果焊接质量不好或者在焊接过程中出现问题,例如温...
51 单片机 开发板怎么连接电源?51单片机开发板的电源连接有两种方式:USB供电和外部电源供电。如果使用USB供电,只需要将开发板的USB口连接到电脑或充电器上即可。如果使用外部电源供电,则需...
单片机 的工艺要求 - 业百科单片机的工艺要求,1、制程工艺:包括制作工艺、处理工艺等,需要满足设备要求、生产成本要求、产品性能要求等。2、温度环境:单片机的温度环境需合适,需要根据芯片...
STC-ISP版本6.85显示“正在检测目标 单片机 ...” 这-ZOL问答你好,这个单片机烧写程序需要冷启动的。也就是说,在电脑上点下载,然后给单片机断电,再给单片机上电,这样才能下进入程序。这就是冷启动。或者你的串口颠倒一...
电子元件芯片的集成度越来越高,电子产品生产企业如何做好 静电 防护工作?电子元器件、电子产品对静电非常敏感,而且静电的电压等级非常高,甚至高达8000V,很容易将电子元器件打坏,尤其是CMOS器件、电路。每年因静电造成的损失都是非...
智能无功功率自动补偿控制器怎样使用安装? - Bi8啵_Qu 的回答...无功功率自动补偿控制器是依据JB/T9663-1999国家最新专业标准设计,可与各种型号低压静电电容屏配套使用,能实时监测电网的功率因数和无功电流进行自...
在座的朋友谁帮忙回答一下 服务周到的智能数控往复升降机有...[回答]1.单片机应用在一个系统中只使用一块单片机,这是目前应用最多的一种方式。主要有:(1)智能产品单片机与传统的机械产品相结合,使传统的机械产品结构...
SMBJ33A_ASEMI电性参数怎么看?[回答]L5-回复瞬态电压抑制二极管(TransientVoltageSuppressor)简称TVS,特点:将TVS二极管加在信号及电源线上,能防止微处理器或单片机因瞬间的脉冲,如静电...
智能无功功率自动补偿控制器怎样使用安装? - 郭小瘦 * 的回答...无功功率自动补偿控制器是依据JB/T9663-1999国家最新专业标准设计,可与各种型号低压静电电容屏配套使用,能实时监测电网的功率因数和无功电流进行自...
上拉电阻和下拉电阻的工作原理?上拉电阻:将一个不确定的信号(高或低电平),通过一个电阻与电源VCC相连,固定在高电平。下拉电阻:将一个不确定的信号(高或低电平),通过一个电阻与地GND...2、...