详解单片机中的串行口
(此处已添加圈子卡片,请到今日头条客户端查看)单片机内部有一个功能强大的全双工串行口,该串行口有四种工作方式,以供不同场合使用。波特率可由软件设置,由片内的定时器/计数器产生。串行口接收、发送均可工作在查询方式或中断方式,使用十分灵活。
单片机的串行口除了用于数据通信之外,还可以用来驱动单片机应用系统中的键盘和显示器,这是其他微机系统所不能比拟的。
串行口的结构与控制
为了进行串行数据通信,单片机同样也需要相应的串行接口电路。不过这个接口电路不是单独的芯片,而是集成在单片机芯片的内部,成为单片机芯片的一个组成部分。
80C51单片机内部的串行口,由发送缓冲寄存器 SBUF、接收缓冲寄存器 SBUF、发送控制寄存器、接收控制寄存器、输入移位寄存器和输出控制门组成。控制单片机串行口的控制寄存器共有两个:特殊功能寄存器 SCON 和 PCON,可以用软件改变两者的内容来控制串行口的工作方式和波特率。
缓冲寄存器SBUF80C51单片机内部有一个全双工的串行通信口,即串行接收和发送缓冲器SBUF,这两个在物理上是独立的接收发送器,既可以接收数据,也可以发送数据。但接收缓冲器只能读出不能写入,而发送缓冲器则只能写入不能读出,两个缓冲器共用同一个地址(99H)。
这个通信口既可用于网络通信,也可实现串行异步通信,还可以当成同步移位寄存器使用。如果在通信口的输入输出引脚上加上电平转换器,还可方便地构成标准的RS-232和RS-485接口。
在逻辑上,SBUF只有一个,既表示发送寄存器,又表示接收寄存器,具有同一个地址(99H)。在物理上,SBUF有两个,一个是发送寄存器,另一个是接收寄存器。
串行口控制寄存器SCON
该寄存器的字节地址为98H,有位寻址功能。
SCON格式如下:
SM0(SCON.7)、SM1(SCON.6):控制串行口的工作方式。
SM2(SCON.5):允许方式2和方式3进行多机通信控制位。在方式2或方式3中,如SM2=1,则接收到的第9位数据(RB8)为0时不激活RI。在方式1时,如SM2=1,则只有收到有效停止位时才会激活RI。若没有接收到有效停止位,则RI清0。在方式0中,SM2必须置为0。
REN(SCON.4):允许串行接收控制位。REN=1允许串行接收,REN=0则禁止串行接收。该标志由软件来置1或清0。
TB8(SCON.3):是工作在方式2和方式3时,该位是要发送的第9位数据。在一些通信协议中该第9位用于奇偶校验(补奇或补偶);而在MCS-51多处理机通信中,这一位是区别地址帧还是数据帧的标志,需要时由软件置位或复位。
RB8(SCON.2):是工作在方式2和方式3时,该位是已接收到的第9位数据,它是奇偶校验位。在MCS-51多处理机通信中是区别地址帧/数据帧的标志。在模式1中,若SM2=0,RB8存放的是已接收数据的停止位。在模式0中,RB8未用,需要时由软件来置1或清0。
TI(SCON.1):发送中断标志位。在模式0中,发送完第8位数据时由硬件置位;在其他模式中发送停止位开始时刻由硬件置位。置位时TI=1,申请中断,CPU响应中断后,由软件来清除TI再发送下一帧数据。
RI(SCON.0):接收中断标志位。在模式0中,接收完第8位数据时由硬件自动置位;在模式 1 中,SM2=1,只有接收到有效的停止位,才能对 RI 置位。在其他模式中,在接收停止位的半中间由硬件对RI置位。置位时申请中断,CPU响应中断后取走数据,清除RI标志,必须由软件清零。
SCON的所有位复位时被清零。
特殊功能寄存器PCON
其字节地址为87H,没有位寻址功能。PCON的格式如下:
其中与串行接口有关的只有D7位。
SMOD:波特率选择位。
串行口的工作方式
串行口有四种工作方式,它们是由串行口控制寄存器 SCON 的 SM0、SM1的状态来定义的,编码及功能如表2-3所示。在这四种工作方式中,串行通信只使用方式1、2、3。方式0主要用于扩展并行输入/输出口。
表2-3 串行口工作方式
表中:fosc为晶振频率,UART为通用异步接收和发生器。
方式0
在方式 0 状态下,串行口为同步移位寄存器输入/输出方式,其波特率是固定不变的,数据由RxD(P3.0)端输入,同步移位脉冲由TxD(P3.1)端输出。方式0主要用于扩展并行输入输出口(如串行LED数码管显示系统等)。
(1)方式0发送
当一个数据写入串行口发送缓冲器SBUF时,串行口即将8位数据以fosc/12的波特率从RxD引脚输出(从低位到高位),发送完8位数据时,将发送中断标志TI置1。TxD引脚输出同步脉冲,波形如图2-22所示。
(2)方式0接收
在满足REN=1和RI=0的条件下,就会启动一次接收过程,此时RxD为串行输入端,TxD为同步脉冲输出端。串行接收的波特率为fosc/12,其时序如图2-23所示。当接收完一帧数据(8位)后,控制信号复位,中断标志 RI 被置 1,呈中断申请状态。当再次接收时,必须通过软件将RI清零。
▲图2-22 串行口“方式0”发送时序
▲图2-23 串行口“方式0”接收时序
在方式0中,SCON中的TB8、RB8位没用,多机通信控制位SM2位必须为0。在方式0下发送或接收完8位数据时,由硬件置1并发送中断标志TI或RI,向CPU申请中断,CPU响应TI或RI中断后,标志TI或RI必须由用户程序清0。
方式1
串行口以方式1工作时,SCON中的SM0、SM1两位分别为0、1,则串行口被控制为波特率可变的8位异步通信接口。发送的每帧信息为10位:1位起始位,8位数据位(先低位后高位)和1位停止位。
(1)方式1发送
串行口以方式1发送时,数据由TxD端输出,CPU执行一条数据写入发送数据缓冲器SBUF的指令,数据字节写入SBUF后,就启动串行口发送器发送。发送完一帧信息的数据位后,发送中断标志置1,其时序如图2-24所示。
▲图2-24 串行口“方式1”发送时序
(2)方式1接收
当REN=1时,允许接收器接收,数据从RxD端输入。接收器以所选波特率的16倍速率采样RxD端的电平,当检测到RxD端从1到0的跳变时,启动接收器接收,并复位内部的16分频计数器,以便实现同步。
在起始位,如果接收到的值不为0,则起始位无效,复位接收电路,当再次接收到一个由1到0的跳变时,重新启动接收器。如果接收值为0,则起始位有效,接收器开始接收本帧的其余信息(一帧信息为10位)。在方式1接收中,若同时满足以下两个条件:RI=0、SM2=0和接收到的停止位=1时,则接收数据有效,实现装载SBUF、停止位进入PB8、接收中断标志RI置1。接收控制器再次采样RxD的负跳变,以便接收下一帧数据。
若这两个条件不能同时满足,信息将丢失。中断标志RI必须由用户的软件清零,通常情况下,串行口以方式1工作时,SM2置为0。方式1的接收时序如图2-25所示。
▲图2-25 串行口“方式1”接收时序
方式2
当SM0、SMl两位分别为1、0时,串行口工作在方式2,此时串行口被定义为9位异步通信接口。发送时可编程位(TB8)根据需要设置为0或1,接收时,可编程位被送入SCON中的RB8。
(1)方式2发送
在方式2发送时,数据由TxD端输出,发送一帧信息由11位组成:1位起始位、8位数据位(低位在先、高位在后)、1位可编程位(第9位数据位)和1位停止位,附加的第9位数据为 SCON中的 TB8。TB8由软件置 1 或清 0,可作为多机通信中的数据标志位,也可作为数据的奇偶校验位。
CPU在执行一条写SBUF的指令后,便立即启动发送器发送,送完一帧信息后,TI被置1,其时序如图2-26所示。在发送下一帧信息之前,TI必须由中断服务程序(或查询程序)清0。
▲图2-26 串行口“方式2”发送时序
(2)方式2接收
当 SM0、SMl两位分别为1、0,且 REN=1 时,允许串行口以方式 2 接收数据。数据由 RxD端输入,接收11位信息:1位起始位、8位数据位、1位可编程位(第9位数据)和1位停止位。当接收器采样到RxD端从1到0的跳变,并判断起始位有效后,便开始接收一帧信息。当接收器接收到第9位数据后,如果RI=0且SM2=0或接收到的第9位数据为1时,接收到的数据送入SBUF,第9位数据送入RB8,并置RI=1,其时序如图2-27所示。若不能同时满足这两个条件,接收的信息将丢失。
▲图2-27 串行口“方式2”接收时序
方式3
当SM0、SM1两位为11时,串行口工作在方式3,方式3为波特率可变的9位异步通信方式,除了波特率外,方式3和方式2的发送时序和接收时序相同。
波特率的计算与串行口初始化
波特率的计算
在串行通信中,收发双方的波特率必须保持一致。通过软件可设定串行口的4种工作方式,并确定每种方式的波特率。
(1)方式0的波特率是固定的,为单片机晶振频率fosc的1/12,即BR=fosc/12。
如fosc=6MHz,则波特率500kbit/s;如fosc=12MHz,则波特率为1Mbit/s。
(2)方式 2 的波特率也是固定的,且有两种。一种是晶振频率的 1/32,另一种是晶振频率的1/64,即fosc/32和fosc/64。如用公式表示为:
式中,SMOD为特殊功能寄存器PCON串行口波特率系数的控制位,SMOD=1表示波特率加倍。注意,PCON不能使用位寻址,只能对其进行字节操作。
如12M晶振系统中,若SMOD=0,则波特率=187.5kbit/s;SMOD=1,则波特率375kbit/s。
(3)方式1和方式3的波特率是可变的,其波特率由定时器1的计数溢出(对80C52来说,也可使用定时器2的计数溢出)决定,公式为:
式中定时器1溢出率计算公式为:
各种方式波特率的计算如表2-4所示。
表2-4 波特率的计算公式
表中,若SMOD=0,则K=1;若SMOD=1,则K=2。
通常使用单片机的串行口时,选用的晶振频率 fosc比较固定(一般为 6MHz , 12MHz 或11.0592MHz)。单片机和微机通信时,选用的波特率也相对固定。
实际使用中,经常根据已知波特率和时钟频率来计算定时器T1的初值。为方便使用,将常用的波特率和初值X间的关系列成表2-5。
表2-5 常用通信方式及其波特率
其中有以下三点需要注意。
(1)表2-5中仅为一些特定系统串口通信时的典型数据,对于其他一些未列出的波特率,应通过前述公式进行计算获取。并可进行相关参数调整,以获得需求的波特率。
(2)在使用的时钟振荡频率为12MHz或6MHz时,表中初值X和相应的波特率之间有一定误差。例如,FDH的对应的理论值是10416波特(时钟振荡频率为6MHz时),与9600波特相差816波特,消除误差可以通过调整时钟振荡频率 fosc来实现。例如,如果采用的时钟振荡频率为11.0592MHz,在要求串行通信的系统中,为保证串行通信准确,一般使用11.0592Hz的晶振。
(3)如果串行通信选用很低的波特率,可将定时器T1设置为方式1定时。但T1溢出时,需要在中断服务程序中重新装入初值。中断响应时间和执行指令时间也会使波特率产生一定的误差,可用改变初值的方法进行适当调整。
串行通信的校验
异步通信时可能会出现帧格式错、超时错等传输错误。在具有串行口的单片机的开发中,应考虑在通信过程中对数据差错进行校验,因为差错校验是保证准确无误通信的关键。常用差错校验方法有奇偶校验(80C51系列单片机编程采用此法)、和校验及循环冗余码校验等。
(1)奇偶校验
在发送数据时,数据位尾随的一位数据为奇偶校验位(1或0)。当设置为奇校验时,数据中1的个数与校验位1的个数之和应为奇数;当设置为偶校验时,数据中1的个数与校验位中1的个数之和应为偶数。接收时,接收方应具有与发送方一致的差错检验设置,当接收一个字符时,对 1的个数进行校验,若二者不一致,则说明数据传送出现了差错。
奇偶校验是按字符校验,数据传输速度将受到影响。这种特点使得它一般只用于异步串行通信中。
(2)和校验
所谓和校验,是指发送方将所发送的数据块求和(字节数求和),并产生一个字节的校验字符(校验和)附加到数据块末尾。接收方接收数据时也是先对数据块求和,将所得结果与发送方的校验和进行比较,相符则无差错,否则即出现了差错。这种和校验的缺点是无法检验出字节位序的错误。
(3)循环冗余码校验
这种校验是对一个数据块校验一次。例如对磁盘信息的访问、ROM或RAM存储区的完整性等的检验。这种方法广泛应用于串行通信方式。
串行口初始化
在使用单片机串行口之前,应对其进行编程初始化,主要是设置产生波特率的定时器1、串行口控制和中断控制,具体步骤如下。
(1)确定定时器l的工作方式——编程TMOD寄存器。
(2)计算定时器l的初值——装载THl、TLl。
(3)启动定时器1——编程TCON中的TRl位。
(4)确定串行口的控制——编程SCON。
(此处已添加圈子卡片,请到今日头条客户端查看)小白的单片机之旅——串口接收
上节已经说了怎样利用串口实现其发送功能为,并给出里一个实现的demo,作一个通信接口,收发是其最基本的功能,接下来我们一起来看看单片机是如何通过串口接收数据的吧。
首先我们上节所说的发送起始已经涉及到接收了,只是我们上节在发送的时候对端是作为接收来呈现了我们的发送的效果。如下图所示,单片机在代码的控制下循环的发送数据“hello world“,那pc作为接收方,接收了这个数据,并解析出来,只是相较于单纯的串口接收来说,它多做了几步,就是将串口收到的数据,通过usb-串口转换线转换成usb的数据,又通过usb接口将数据送给了运行于PC上的驱动程序,再通过windows系统的系统调用应用程序获取并显示出对应的字符串。
发送验证结果
上面的过程尽管包含了接收,但是涉及的稍微多了一些,有点不太直观。我们看看在单片机最简单的接收流程是怎么样的。简单说来,数据从信号线上以发送端控制下以相关协议格式发送特定格式的bit流,在接收侧,需要以对应的帧格式去解析它,当然一般来说是硬件干了这个事情(当然软件也可以干,只是一般不需要),但是需要接收端设置好帧格式,波特率等参数。硬件依据协议参数解析bit流,校验成功之后(如果设置了)会将数据放在对应的数据寄存器里,等待软件处理。
前面说的是一般串口接收时,软件感知到接收到数据之前发生的事情。因此,一般的mcu串口功能,在上节说的发送的基础上,只需要再使能接收,在合适的时机去接收数据寄存器取数即可。
那什么是“合适的时机”?一个是我们知道需要接收数据的时候,这时候我们可以使用查询等待的方式接收数据(当然一般包含超时参数),查看对应的状态寄存器,如果有接收标记,就去取数据;另一个就是我们根本不知道数据什么时候会来,或者说我们也不想把宝贵的cpu资源浪费在查询等待动作上,这时候我们会使用对应的中断机制,也就是说我们事先配置好对应的中断处理接口,在接收到数据的时候硬件会触发一个中断,最终调用我们配置好的中断处理接口,在该接口中及时完成对应的接收处理动作。
下面我们就看一个最简单的接收demo。
串口初始化
出口基本功能初始化如上,同发送。此处只使用轮询等待方式实现串口接收,在接收到换行符之后,将之前接收到的数据打印出来。实现如下:
实验结果如下:
轮询方式串口接收验证结果
至此我们完成了一个简单的轮询式接收demo,当然实际使用时就算是轮序状态也会设置一个超时参数用以防止死在这里,或者消耗太多时间,各种参数需要根据实际的业务场景进行确定。
下一节我们一起看看基于中断的,更灵活高效的串口接收方式。
相关问答
两个51 单片机串口 通讯有哪些实际 应用 ?两个51单片机串口通讯有许多实际应用。首先,串口通讯可以实现两个单片机之间的数据传输,可以用于智能家居控制系统、智能化嵌入式设备、机器人等领域;其次,串...
单片机串口 通讯技术难点以及解决方案?1、单片机实现简单近距离传输数据玩玩的确实很简单,只要你懂得配置串口,此时应该没有什么技术难点。2、如果你希望在工程上实现多个单片机间或是长距离与PC机...
单片机 中的 串口 是什么?单片机中的串口是口或串行通讯接口(通常指COM接口),是采用串行通信方式的扩展接口。串行接口(SerialInterface)是指数据一位一位地顺序传送,其特点是通信...
51 单片机串口 通信,下面的何时发生中断?为什么要加一个flag=...这里我给你解释一下flag=1;的作用,比如串口调试助手,发送数据单片机自动开启接收中断,接收RI=1;当单片机接收数据完成后,必须软件进行清零RI=0,说明...
传感器传出的数字信号输出要如何连接 单片机串口 ?首先,用单片机读取数字传感器数据,然后单片机通过串口将数据发送,PC端要有TTL电平的串口(不是RS232),将单片机的串口TXD、RXD及GND与PC端串口的RXD、TXD、G...
单片机 中 串口 与普通I/O口有什么区别?单片机串行口与普通IO口区别如下:1、串口用作串行通信,通信包括IIC,RS485,RS232等,它也是输出是定速度的0-1-0-之类变化。2、I/O口是指来关量的输入或输...
如何51 单片机 的 串口 发送多个数据和接受多个数据?你发送时,用循环控制,发几个字节,循环几次。连续发送多个数据,都是小意思,也是最基本的了。接收更好办了,用中断接收,中断一次接收一次,你就保存一次呗...你...
请问 单片机 开发板上的 串口 接口、USB电源接口以及外部电源接口的各个功能是什么?串口接口的功能:1、与其他串口通讯2、下载程序(如果单片机有ISP功能的话)USB电源接口的功能:1、提供开发板5V电源(内部电源)2、下载程序(如果单片机...
【 单片机 的问题】“ 串口 ”和“串行接口”是一回事吗 - 懂得口语中的“串口”多数情况下是指RS232/TTL电平的UART接口,有时候也用来指计算机的COM口(RS232电平的UART接口)。“串行接口”这个概念就广泛的多了,...
15 单片机 如何使用 串口 2进行 串口 通信?15单片机使用串口2进行串口通信的方法如下:15单片机可以通过配置串口2的相关寄存器来实现串口通信。串口2是15单片机上的一个硬件模块,可以通过设置相关寄存器...