产品概述

51单片机 1602程序 单片机实例分享,自制电感和电容测量仪

小编 2024-10-06 产品概述 23 0

单片机实例分享,自制电感和电容测量仪

电子爱好者进行制作时经常需要绕制电感,而一般的数字万用表通常又没有电感测量挡,所以无法测量绕好的电感的电感量。本文介绍一种用单片机制作的电感和电容测量仪(见图23.1),可以有效地解决这一问题。

测量原理

本测量仪采用谐振法测量电感和电容,其方法是用谐振回路的谐振特性来进行测量,其测量原理可用如图23.2所示的电路进行说明。

图23.1 电感和电容测量仪

测量电感Lx时,配用标准电容C1,用Lx和C1组成谐振回路,测量出回路的谐振频率f即可计算出Lx的电感量;测量电容Cx时,配用标准电感L1,用L1和Cx组成谐振回路,测量出回路的谐振频率f即可计算出Cx的电容量。

上述测量方法也有一个缺陷:当Lx或Cx很小时,谐振频率f会很大,测量比较困难,为此我们可以采用如图23.2所示的改进型电路,分别用L1和C1作“垫底”,降低了测量时的谐振频率。

假设由 L1和C1 组成的谐振回路谐振频率为f1,测量Lx时,Lx和L1串联,测得(L1+Lx)和C1组成的谐振回路谐振频率为f2,则根据下式可计算出Lx的电感量:

Lx=[(f1/f2)2-1]L1

测量Cx时,Cx和C1并联,测得L1和(C1+Cx)组成的谐振回路谐振频率为f2,则可根据下式可计算出Cx的电容量:

Cx=[(f1/f2)2-1]C1

硬件电路

测量仪电路如图23.2所示。电路由LC振荡电路、单片机电路、显示电路等部分组成。

CD4069是6非门CMOS集成电路,其中非门F1、F2和C2、R1、R2等组成两级放大电路。第一级放大电路中,R2是负反馈偏置电阻,将F1输出端的直流电位钳制在VCC/2,使F1工作在线性放大区域。第二级放大电路没有加反馈电阻,直接用第一级放大电路输出的直流电压作偏置电压,以提高放大器的增益。放大电路通过正反馈回路R3、C3与L1、C1谐振电路一起组成正弦波振荡电路,非门F3用于信号整形,把F2输出的正弦波转换成矩形波输入到单片机ATmega8的T1脚,由单片机进行脉冲计数,从而测出LC回路的谐振频率。通过单片机对数据进行计算处理后,由LCD1602液晶屏显示测量结果。

图23.2 测量仪电路原理图

S1为测量转换开关,当S1转向L时测量电感,转向C时测量电容。S2是归0按钮。

LCD1602采用4线制传递数据,只使用了数据端口D4~D7。

当开关S1在电容挡但没有测量电容Cx,或在电感挡并且用短路线代替Lx时,电路的振荡频率约为503kHz,我们把这个频率称为基准频率。测试电容或电感时,被测试元件的电容量或电感量越大,对应的振荡频率越低。当被测电容的电容量为10μF(或电感的电感量为1H)时,对应的振荡频率约为5.03kHz。

电阻R5的阻值控制LCD1602液晶屏的对比度,R5阻值越小,液晶屏对比度越大。LED和LED+是液晶屏背光发光二极管的供电端口。

程序设计

测量仪的电路比较简单,而功能的实现更重要地依赖于程序的设计。程序的设计和优化需要花费更多的精力。

程序由频率测量、测试数据的计算处理、LCD1602液晶屏驱动显示三大部分组成。频率测量部分用定时器T/C1作脉冲计数,定时器T/C2产生测量脉冲频率的闸门时间。这里闸门时间选择0.5s,定时器T/C1累计的脉冲数乘以2即得脉冲频率。闸门时间选择0.5s是为了提高LCD1602显示数据刷新速度,如果闸门时间选1s,则刷新速度偏慢。

测试数据的计算处理部分主要利用前面给的两个公式计算出测量结果,并经过数据预处理后,输出到显示电路显示读数。

LCD1602的数据传输采用4线制,8位数据分两次传送,先传高4位,后传低4位,因为传递的数据量不大,所以你感觉不到4线制速度传输和8线制有什么区别。

安装调试

制作所需元器件的清单见表23.1。

C1、L1要选用精度比较高的元件,有条件的可用万能电桥进行筛选。L1如买不到成品电感也可自制,磁芯用Φ8×10的工字磁芯,用Φ0.42的漆包线绕55.5圈。

安装前先将程序的目标文件写入单片机ATmega8L,熔丝位的设置如图23.3所示。

图23.3 熔丝位的设置

电路板的装配图如图23.4所示。LCD1602的接口排座焊接在电路板上,排针焊接在LCD1602模块上如图23.5所示。

表23.1 元器件清单

图23.4 电路板装配图

安装完成后,用一根USB线将电源接口连到电脑USB插座上,接通测量仪的电源,将S1置于电容挡,测量端不接电容,这时LCD1602第二行显示的是基准频率f1,如图23.6所示。基准频率如果超出503kHz±5kHz的范围,说明L1、C1中有元件误差较大,需进行相应的调整。如果L1是自绕的,出现误差的可能性相对较大,可适当增减其圈数,直至满足要求。

接通电源后,以电容挡为例,虽然我们在测试端并没有接任何电容,但LCD1602第一行显示的电容量读数并不为零,如图23.6所示,我们称其为初始值,这是由基准频率略有漂移造成的。这时如果测量小容量的电容,误差就比较大,当初始值后有“-”号时,测量值是实际值减去了初始值,即读数比实际容量小了。反之,测量值是实际值加上了初始值,即读数比实际容量大了。

对于上述问题,我在程序中也作了考虑,只要在不接测试电容的情况下按一下S2就可以归0了,其实质就是基准频率作了修正,并把修正结果存入EEPROM,掉电后不会丢失。归0后的显示数据如图23.7所示。

电容挡归0后,电感挡就不需要归0了,因为电容挡归0就相当于在电感挡测试端接了一个短路线,等同于电感挡归0(在S1置于电感挡,S2归0时其测试端必须接短路线),分析一下电路就明白了。

图23.5 排针的焊接

如果使用中发现测量误差较大,可通过程序进行修正,具体做法如下:找一个精度高的1000pF电容进行测量,假设读数为950pF,则计算1000/950≈1.05,我们将其称为修正系数,将计算公式Cx=[(f1/f2)2-1]C1改为Cx=[(f1/f2)2-1]C1×1.05,用这个公式计算就能减小测量误差了。为了简化程序中的计算,我采取把程序中的语句“unsigned int C1=1000”改为“unsigned int C1=1050”的方法,效果是一样的。

再找一个精度高的100μH电感进行测量,假设读数为94,则计算100/94≈1.06,把程序中的语句“unsigned char L1=100”改为“unsigned char L1=106”,同样也能减小测量误差。

把重新编译好的目标文件烧写到ATmega8L,再进行测量,精度就提高了。

用本测试仪测量电容的实例如图23.8所示(测量对象分别为240pF云母电容和0.47μF安规电容),测量电感的实例如图23.9所示(测量对象分别为10μH电感和电子节能灯的电感线圈)。

当测量值超过量程时,读数显示“OVE”,测电感时电感测试端不接电感(相当于电感量为无穷大),读数也显示“OVE”。

图23.6 基准频率的测量结果

图23.7 按S2归0后的显示数据

使用这个电感和电容测量仪时有一个问题需要注意,即电感或电容的参数会受测试频率的影响。例如,具有磁芯的电感,由于受磁芯的频率特性影响,不同的测试频率,其结果可能有所不同,用这个测量仪测的数据和用信号源频率为1000Hz的万能电桥测的数据可能会不一致。笔者认为,用更接近实际工作频率的测试频率可以得到比较符合实际的测试结果。由于本测试仪工作频率比较高,不适合测量电解电容器。笔者测量一个10μF的电解电容器,对应测试频率为6.5kHz,读数为6.26μF,误差很大。

图23.8 电容的测量结果

图23.9 电感的测量结果

送给初学单片机朋友干货之二——用单片机制作简易计算器

计算器简介

计算器是现代人发明的可以进行数字运算的电子机器。现代的电子计算器能进行数学运算的手持电子机器,拥有集成电路芯片,但结构简单,功能弱,但较为方便与廉价,可广泛运用于商业交易中,主要是计算结果是必备的办公用品之一。为节省电能,计算器都采用CMOS工艺制作的大规模集成电路。低档计算器的运算器、控制器由数字逻辑电路实现简单的串行运算,键盘是计算器的输入部件,一般采用接触式或传感式。为减小计算器的尺寸,一键常常有多种功能。显示器是计算器的输出部件,有数码管显示器或液晶显示器等。那么今天给各位朋友介绍的是用单片机制作的简单的模拟计算器。

简易计算器

为了帮助单片机爱好者学习单片机,本计算器是系列STC89C51RC单片机为核心构成的简易计算器系统。该系统通过单片机控制,实现对4*4键盘扫描进行实时的按键检测,并由LCD1602显示屏将过程与结果显示出来。硬件相对比较简单,主要由四部分组成。第一部分是单片机最小系统;第二部分是 4*4矩阵键盘;第三部分是LCD1602显示屏;第四部分是系统+5V电源。还是先说说制作流程:

第一步是绘制电路原理图

以单片机为主控芯片的简易计算器原理图

第二步是根据设计绘制的原理图购买电子元器件

所用电子元器件明细表

单片机主控芯片——-STC89C52RC 1片

LCD液晶显示模块——LCD1602 1片

点动按键BUTTON -- -- 17个

自锁开关按键------ 1个

10K可调电阻-----1个

晶振----- 1个

10K电阻-----9个

10UF电解电容-----1个

稳频电容30PF----2个

PCB万能实验板 ----1块

第三步是万能实验板的焊接

由于所用原件比较少焊接相对比较简单,焊接时主要注意单片机芯片最好用插座,便于烧写程序,还有就是LCD1602 的引脚要焊接正确,不能焊接错误,再一个就是16X16的矩阵按键焊接时也要留心。其他都比较好焊接。

简易计算器电路板正面

简易计算器焊接反面

下面主要说说LCD1602液晶这个显示模块,那个大大的,平时第一行显示 16 个小黑块,第二行什么都不显示的东西就是 1602 液晶, 1602 液晶主要显示容量 16 x 2 个字符,芯片工作电压 4.5~5.5V ,工作电流 2.0mA(5.0V) ,模块最佳工作电压 5.0V 1602 液晶,从它的名字我们就可以看出它的显示容量,就是可以显示 2 行,每行 16 个字符的液晶。它的工作电压是 4.5V~5.5V,这点我们直接按照 5V电源接上就可以了,但是保证我们的 5V 系统最低不能低于 4.5V。在 5V 工作电压下测量它的工作电流是 2mA,大家注意,这个 2mA 仅仅是指液晶,而它的黄绿背光都是用 LED 做的,所以功耗一般有一二十毫安。1602 液晶一共 16 个引脚,每个引脚的功能如下注释说明。

1, VSS--- 电源地

2, VDD---- 电源正极

3 ,VL---- 液晶显示偏压信号

4 ,RS---- 数据/命令选择端(H/L)

5, R/W---- 读/写选择端(H/L)

6, E---- 使能信号端

7, D0 --Data I/O (输入输出口)

8, D1--- Data I/O(输入输出口)

9, D2--- Data I/O (输入输出口)

10, D3 ---Data I/O (输入输出口)

11, D4--- Data I/O (输入输出口)

12 ,D5 ---Data I/O (输入输出口)

13 ,D6 ---Data I/O (输入输出口)

14, D7 ---Data I/O (输入输出口)

15, BLA ---背光源正极(输入输出口)

16, BLK ----背光源负极(输入输出口)

LCD1602正面

LCD1602背面

第四部分是程序编写部分

我们制作最简易的计算器可由按键和液晶两个元件为核心。下面我们来共同学习一个简易整数计算器。为了不让程序太复杂,我们这个计算器不考虑连加,连减等连续计算,不考虑小数情况。加键、减键、乘键、除键、和0-9键、等于键、清零键等16个按键,组成一个矩阵键盘。我们通过模块化编程,其程序共分为三部分,第一部分是主函数模块,第二部分是1602 液晶显示模块,第三部分是按键动作和扫描模块,我们先说主程序模块。在必要的语句后面都加了注释,方便大家理解。

主函数模块

#include <reg52.h>

unsigned char step = 0; //操作步骤

unsigned char oprt = 0; //运算类型

signed long num1 = 0; //操作数1

signed long num2 = 0; //操作数2

signed long result = 0; //运算结果

unsigned char T0RH = 0; //T0重载值的高字节

unsigned char T0RL = 0; //T0重载值的低字节

void ConfigTimer0(unsigned int ms);//配置时间函数声明

extern void KeyScan();//外部按键扫描函数声明

extern void KeyDriver();//外部按键驱动函数声明

extern void InitLcd1602();//外部液晶LCD1602函数初始化声明

extern void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str);//外部显示字符声明

extern void LcdAreaClear(unsigned char x, unsigned char y, unsigned char len);//清屏

extern void LcdFullClear();//清屏函数声明

void main( void)

{

EA = 1; //开总中断

ConfigTimer0(1); //配置T0定时1ms

InitLcd1602(); //初始化液晶

LcdShowStr(15, 1, "0"); //初始显示一个数字0

while (1)

{

KeyDriver(); //调用按键驱动

}

}

/* 长整型数转换为字符串,str-字符串指针,dat-待转换数,返回值-字符串长度 */

unsigned char LongToString(unsigned char *str, signed long dat)

{

signed char i = 0;

unsigned char len = 0;

unsigned char buf[12];

if (dat < 0) //如果为负数,首先取绝对值,并在指针上添加负号

{

dat = -dat;

*str++ = '-';

len++;

}

do { //先转换为低位在前的十进制数组

buf[i++] = dat % 10;

dat /= 10;

} while (dat > 0);

len += i; //i最后的值就是有效字符的个数

while (i-- > 0) //将数组值转换为ASCII码反向拷贝到接收指针上

{

*str++ = buf[i] + '0';

}

*str = '\0'; //添加字符串结束符

return len; //返回字符串长度

}/* 显示运算符,显示位置y,运算符类型type */

void ShowOprt(unsigned char y, unsigned char type)

{

switch (type)

{

case 0: LcdShowStr(0, y, "+"); break; //0代表+

case 1: LcdShowStr(0, y, "-"); break; //1代表-

case 2: LcdShowStr(0, y, "*"); break; //2代表*

case 3: LcdShowStr(0, y, "/"); break; //3代表/

default: break;

}

}

/* 计算器复位,清零变量值,清除屏幕显示 */

void Reset()

{

num1 = 0;

num2 = 0;

step = 0;

LcdFullClear();

}

/* 数字键动作函数,n-按键输入的数值 */

void NumKeyAction(unsigned char n)

{

unsigned char len;

unsigned char str[12];

if (step > 1) //如计算已完成,则重新开始新的计算

{

Reset();

}

if (step == 0) //输入第一操作数

{

num1 = num1*10 + n; //输入数值累加到原操作数上

len = LongToString(str, num1); //新数值转换为字符串

LcdShowStr(16-len, 1, str); //显示到液晶第二行上

}

else //输入第二操作数

{

num2 = num2*10 + n; //输入数值累加到原操作数上

len = LongToString(str, num2); //新数值转换为字符串

LcdShowStr(16-len, 1, str); //显示到液晶第二行上

}

}

/* 运算符按键动作函数,运算符类型type */

void OprtKeyAction(unsigned char type)

{

unsigned char len;

unsigned char str[12];

if (step == 0) //第二操作数尚未输入时响应,即不支持连续操作

{

len = LongToString(str, num1); //第一操作数转换为字符串

LcdAreaClear(0, 0, 16-len); //清除第一行左边的字符位

LcdShowStr(16-len, 0, str); //字符串靠右显示在第一行

ShowOprt(1, type); //在第二行显示操作符

LcdAreaClear(1, 1, 14); //清除第二行中间的字符位

LcdShowStr(15, 1, "0"); //在第二行最右端显示0

oprt = type; //记录操作类型

step = 1;

}

}

/* 计算结果函数 */

void GetResult()

{

unsigned char len;

unsigned char str[12];

if (step == 1) //第二操作数已输入时才执行计算

{

step = 2;

switch (oprt) //根据运算符类型计算结果,未考虑溢出问题

{

case 0: result = num1 + num2; break;

case 1: result = num1 - num2; break;

case 2: result = num1 * num2; break;

case 3: result = num1 / num2; break;

default: break;

}

len = LongToString(str, num2); //原第二操作数和运算符显示到第一行

ShowOprt(0, oprt);

LcdAreaClear(1, 0, 16-1-len);

LcdShowStr(16-len, 0, str);

len = LongToString(str, result); //计算结果和等号显示在第二行

LcdShowStr(0, 1, "=");

LcdAreaClear(1, 1, 16-1-len);

LcdShowStr(16-len, 1, str);

}

}

/* 按键动作函数,根据键码执行相应的操作,keycode-按键键码 */

void KeyAction(unsigned char keycode)

{

if ((keycode>='0') && (keycode<='9')) //输入字符

{NumKeyAction(keycode - '0'); }

else if (keycode == 0x26) //向上键,+

{ OprtKeyAction(0);}

else if (keycode == 0x28) //向下键,-

{ OprtKeyAction(1); }

else if (keycode == 0x25) //向左键,*

{ OprtKeyAction(2);}

else if (keycode == 0x27) //向右键,÷

{OprtKeyAction(3);}

else if (keycode == 0x0D) //回车键,计算结果

{ GetResult();}

else if (keycode == 0x1B) //Esc键,清除

{

Reset();

LcdShowStr(15, 1, "0");

}

}

/* 配置并启动T0,ms-T0定时时间 */

void ConfigTimer0(unsigned int ms)

{

unsigned long tmp; //临时变量

tmp = 11059200 / 12; //定时器计数频率

tmp = (tmp * ms) / 1000; //计算所需的计数值

tmp = 65536 - tmp; //计算定时器重载值

tmp = tmp + 28; //补偿中断响应延时造成的误差

T0RH = (unsigned char)(tmp>>8); //定时器重载值拆分为高低字节

T0RL = (unsigned char)tmp;

TMOD &= 0xF0; //清零T0的控制位

TMOD |= 0x01; //配置T0为模式1

TH0 = T0RH; //加载T0重载值

TL0 = T0RL;

ET0 = 1; //使能T0中断

TR0 = 1; //启动T0

}

/* T0中断服务函数,执行按键扫描 */

void InterruptTimer0() interrupt 1

{

TH0 = T0RH; //重新加载重载值

TL0 = T0RL;

KeyScan(); //按键扫描

}

1602 液晶显示模块

#include <reg52.h

#define LCD1602_DB P0

sbit LCD1602_RS = P1^0;

sbit LCD1602_RW = P1^1;

sbit LCD1602_E = P1^5;

/* 等待液晶准备好 */

void LcdWaitReady()

{

unsigned char sta;

LCD1602_DB = 0xFF;

LCD1602_RS = 0;

LCD1602_RW = 1;

do {

LCD1602_E = 1;

sta = LCD1602_DB; //读取状态字

LCD1602_E = 0;

} while (sta & 0x80); //bit7等于1表示液晶正忙,重复检测直到其等于0为止

}

/* 向LCD1602液晶写入一字节命令,cmd-待写入命令值 */

void LcdWriteCmd(unsigned char cmd)

{

LcdWaitReady();

LCD1602_RS = 0; LCD1602_RW = 0; LCD1602_DB = cmd;

LCD1602_E = 1; LCD1602_E = 0;

}

/* 向LCD1602液晶写入一字节数据,dat-待写入数据值 */

void LcdWriteDat(unsigned char dat)

{

LcdWaitReady();

LCD1602_RS = 1; LCD1602_RW = 0; LCD1602_DB = dat;

LCD1602_E = 1; LCD1602_E = 0;

}

/* 设置显示RAM起始地址,亦即光标位置,(x,y)-对应屏幕上的字符坐标 */

void LcdSetCursor(unsigned char x, unsigned char y)

{

unsigned char addr;

if (y == 0) //由输入的屏幕坐标计算显示RAM的地址

addr = 0x00 + x; //第一行字符地址从0x00起始

else

addr = 0x40 + x; //第二行字符地址从0x40起始

LcdWriteCmd(addr | 0x80); //设置RAM地址

}

/* 在液晶上显示字符串,(x,y)-对应屏幕上的起始坐标,str-字符串指针 */

void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str)

{

LcdSetCursor(x, y); //设置起始地址

while (*str != '\0') //连续写入字符串数据,直到检测到结束符

{

LcdWriteDat(*str++);

}

}

/* 区域清除,清除从(x,y)坐标起始的len个字符位 */

void LcdAreaClear(unsigned char x, unsigned char y, unsigned char len)

{

LcdSetCursor(x, y); //设置起始地址

while (len--) //连续写入空格

{

LcdWriteDat(' ');

}

}

/* 整屏清除 */

void LcdFullClear()

{

LcdWriteCmd(0x01);

}

/* 初始化1602液晶 */

void InitLcd1602()

{

LcdWriteCmd(0x38); //16*2显示,5*7点阵,8位数据接口

LcdWriteCmd(0x0C); //显示器开,光标关闭

LcdWriteCmd(0x06); //文字不动,地址自动+1

LcdWriteCmd(0x01); //清屏

}

Lcd1602.c 文件中根据上层应用的需要增加了2 个清屏函数:区域清屏——LcdAreaClear,

整屏清屏——LcdFullClear。

按键动作和扫描模块

#include <reg52.h>

sbit KEY_IN_1 = P2^4;sbit KEY_IN_2 = P2^5;sbit KEY_IN_3 = P2^6;

sbit KEY_IN_4 = P2^7;//定义输入端口

sbit KEY_OUT_1 = P2^3;sbit KEY_OUT_2 = P2^2;sbit KEY_OUT_3 = P2^1;

sbit KEY_OUT_4 = P2^0;//定义输出端口

unsigned char code KeyCodeMap[4][4] = { //矩阵按键编号到标准键盘键码的映射表

{ '1', '2', '3', 0x26 }, //数字键1、数字键2、数字键3、加号键

{ '4', '5', '6', 0x25 }, //数字键4、数字键5、数字键6、乘号键

{ '7', '8', '9', 0x28 }, //数字键7、数字键8、数字键9、减号键

{ '0', 0x1B, 0x0D, 0x27 } //数字键0、清零键、 等于键、 除号键

};

unsigned char pdata KeySta[4][4] = { //全部矩阵按键的当前状态

{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}

};

extern void KeyAction(unsigned char keycode);

/* 按键驱动函数,检测按键动作,调度相应动作函数,需在主循环中调用 */

void KeyDriver()

{

unsigned char i, j;

static unsigned char pdata backup[4][4] = { //按键值备份,保存前一次的值

{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}

};

for (i=0; i<4; i++) //循环检测4*4的矩阵按键

{

for (j=0; j<4; j++)

{

if (backup[i][j] != KeySta[i][j]) //检测按键动作

{

if (backup[i][j] != 0) //按键按下时执行动作

{

KeyAction(KeyCodeMap[i][j]); //调用按键动作函数

}

backup[i][j] = KeySta[i][j]; //刷新前一次的备份值

}

}

}

}

/* 按键扫描函数,需在定时中断中调用,推荐调用间隔1ms */

void KeyScan()

{

unsigned char i;

static unsigned char keyout = 0; //矩阵按键扫描输出索引

static unsigned char keybuf[4][4] = { //矩阵按键扫描缓冲区

{0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF},

{0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF}

};

//将一行的4个按键值移入缓冲区

keybuf[keyout][0] = (keybuf[keyout][0] << 1) | KEY_IN_1;

keybuf[keyout][1] = (keybuf[keyout][1] << 1) | KEY_IN_2;

keybuf[keyout][2] = (keybuf[keyout][2] << 1) | KEY_IN_3;

keybuf[keyout][3] = (keybuf[keyout][3] << 1) | KEY_IN_4; //消抖后更新按键状态

for (i=0; i<4; i++) //每行4个按键,所以循环4次

{

if ((keybuf[keyout][i] & 0x0F) == 0x00)

{ //连续4次扫描值为0,即4*4ms内都是按下状态时,可认为按键已稳定的按下

KeySta[keyout][i] = 0;

}

else if ((keybuf[keyout][i] & 0x0F) == 0x0F)

{ //连续4次扫描值为1,即4*4ms内都是弹起状态时,可认为按键已稳定的弹起

KeySta[keyout][i] = 1;

}

} //执行下一次的扫描输出

keyout++; //输出索引递增

keyout &= 0x03; //索引值加到4即归零

switch (keyout) //根据索引,释放当前输出引脚,拉低下次的输出引脚

{

case 0: KEY_OUT_4 = 1; KEY_OUT_1 = 0; break;

case 1: KEY_OUT_1 = 1; KEY_OUT_2 = 0; break;

case 2: KEY_OUT_2 = 1; KEY_OUT_3 = 0; break;

case 3: KEY_OUT_3 = 1; KEY_OUT_4 = 0; break;

default: break;

}

}

keyboard.c 是对之前已经用过多次的矩阵按键驱动的封装,具体到某个按键要执行的动

作函数都放到上层的 main.c 中实现,在这个按键驱动文件中只负责调用上层实现的按键动作函数即可。 main.c 文件实现所有应用层的操作函数,即计算器功能所需要信息显示、按键动作响应等,另外还包括主循环和定时中断的调度。 通过这样一个程序,我们可以学习如何进行多个.c 文件的编程,另外一个方面学会多个函数之间的灵活调用。可以把这个程序看成是一个简单的小项目进行练习。

第五部分是调试

调试分为硬件调试和软件调试两部分,调试时先调试硬件电路,然后再调试软件。硬件比较简单容易调试,主要是软件的调试要费些时间,只要有信心,就能在调试过程中锻炼自己的发现问题、分析问题、解决问题的能力。这个程序有点长,希望喜欢单片机的小伙伴们耐下心,慢慢理解,有问题可以留言、讨论!

调试完成的界面3795X593的结果

调试好的界面 3795x593

希望这个小项目能对喜欢单片机的小伙伴们有一定的帮助!喜欢的话请关注、留言、别忘了点个赞哦!你的支持是我前进的动力!

相关问答

51单片机 lcd 1602 如何显示数字变量?

1602是可以显示字符的,如'1','2'等,可以设置一个字符串,如charAA[]={'0123456789'}那么设置一个变量i,AA[i]就行...

1602 液晶显示器与 51单片机 连接电路图-ZOL问答

就是说那个引脚是1602告诉单片机:我现在没有有空接受你的指令?对1602发指令,它要有个时间延迟,才能执行完成,才可以接受下一条指令,这样的话,你要等待,多长时...

51单片机1602 液晶屏0x0c和0x06是什么意思,为什么这么表示?

你说的是在给1602初始化的时候,要写两个命令字,0x0c和0x06就是两个命令字。前面的0x是表示为十六进制数。你说的是在给1602初始化的时候,要写两个命令字,0x0c...

lcd 1602 e脚接 单片机 哪里?

1.LCD1602E脚接单片机的位置是在单片机的IO口上。2.这是因为LCD1602E是一种液晶显示屏,需要通过单片机的IO口来控制和传输数据。通过将LCD1602E的引脚与单片...

51单片机 字符液晶屏(LMC 1602 )输出端RS,RW还有E分别都有什么作用?

从左向右,1,2,3是电源和亮度(不同的1602型号对应也不同),4,5,6,是rs,rw,e,一般是这样的,就算接错了,在单片机里面重定义就行了从左向右,1,2,3是电源和亮度(不...

C 51单片机 中,如何把一int型形参中的数值显示在 1602 液晶屏上?

在C51单片机中,要将一个int型形参中的数值显示在1602液晶屏上,可以通过以下步骤进行操作:1.首先,连接好C51单片机和1602液晶屏。确保液晶屏的VCC(正电源)...

1602 a显示屏和 单片机 引脚怎么接?

答:要将1602A显示屏与单片机连接,您需要了解1602A显示屏的引脚布局以及所使用的单片机的引脚功能。以下是一种常见的连接方式:1.1602A显示屏引脚布局:-VSS...

LCD 1602 在编写 程序 写指令用到OX80、OX30分别代表什么意思?

write_cmd(OX80+OX40);表示在第二行第一位显示write_cmd(OX80);表示在第一行第一位显示write_date(OX30+shi);中OX30+0,1,2,3~9是表示...

为什么选择led 1602 单片机 音乐盒?

LED1602是一种16x2字符液晶显示屏,它具有较小的尺寸和较低的功耗,非常适合作为单片机音乐盒的显示设备。它可以显示歌曲信息、播放进度和音量等重要参数,提供...

lcd 1602 电阻怎么选?

选择LCD1602的电阻时,需要考虑以下几个方面:1.电阻值:LCD1602的电阻值取决于所连接的电路,例如对于背光电压,典型的电阻值在100至220欧姆之间。对于亮度调...

猜你喜欢