产品概述

单片机 th1 十字路口交通信号灯单片机控制系统设计与调试

小编 2024-11-24 产品概述 23 0

十字路口交通信号灯单片机控制系统设计与调试

第一章 控制要求

1.1 控制要求

(1)系统工作受开关控制,起动开关 ON 则系统工作;起动开关 OFF 则系统停止工作。

(2)控制对象有八个:

东西方向红灯两个 , 南北方向红灯两个,

东西方向黄灯两个 , 南北方向黄灯两个,

东西方向绿灯两个 , 南北方向绿灯两个,

东西方向左转弯绿灯两个,南北方向左转弯绿灯两个。

(3)另外东西方向、南北方向各设置显示两位十进制的7段显示器,用来显示倒数计数值。

1)高峰时段按时序图二(见附图)运行, 正常时段按时序图三(见附图)运行,晚上时段按提示警告方式运行,规律为: 东、南、西、北四个黄灯全部闪亮,其余灯全部熄灭。

高峰时段、正常时段及晚上时段的时序分配按时序图一运行(见附图)。

可以只选择高峰时段或正常时段进行设计,但最后评分值最高以良好评议;如果全部功能实现(需要设计一个24小时的时钟作为时段划分的基础),最高评分值以优秀评议。

时序图

第二章 系统方案设计

2.1交通灯运行状态分析

根据控制要求,系统以下图交通的运行状态来设计系统方案。

状态1南北直行;状态2南北左转; 状态3东西直行;状态4东西左转。

共有四种状态,分别设定为S1、S2、S3、S4,交通灯以这四种状态为一个周期。循环执行如图1.5所示:

图2.1 交通灯状态循环图

2.2系统总体方案设计

图2.2系统总体方案图

本系统采用MCS-51系列单片机AT89C51为中心器件来设计交通灯控制器,实现了正常、高峰、晚间时通过单片机的P1口设置红、绿、黄灯亮灭的功能。东西、南北两位7段显示器用来显示倒数计数值。系统分三种工作时段:正常、高峰、晚间,并且通过时间段来控制"正常"、"高峰"、"晚间"相互转化。

正常时段:南北段直行通行(绿灯)、东西段禁止(红灯)40s,同时南北段和东西段方向的数码管分别从40s和70s开始倒计时,至最后5s时南北段绿灯变成黄灯闪烁;此后南北段左转(左转绿灯亮)通行、东西段禁止(红灯)20s,同时南北段和东西段方向的数码管都从20s开始倒计时,至最后5s时南北段左转灯变成黄灯闪烁;再后东西段直行通行(绿灯)、南北段禁止(红灯)40s,同时东西段和南北段方向的数码管分别从40s和70s开始倒计时,至最后5s时东西段绿灯变成黄灯闪烁;最后东西段左转(左转绿灯亮)通行、南北段禁止(红灯)20s,同时东西段和南北段方向的数码管都从20s开始倒计时,至最后5s时东西段左转灯变成黄灯闪烁。

高峰时段:南北段、东西段的通行时间改为45s,左转的时间改为15s,其它与正常时段相同。

晚间时段:禁止左转和直行,东西南北四个方向黄灯闪亮。

第三章 系统电路设计

3.1控制芯片选择

图3.1 AT89C51引脚图

AT89C51是美国ATMEL公司生产的低电压,高性能CMOS 8位单片机,有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个可编程定时计数器,2个全双工串行通信口,2个读写口线,器件采用ATMEL公司的高密度、非易失性存储技术生产,与标准MCS-51指令系统及8051产品引脚兼容,片内置通用8位中央处理器(CPU)和Flash存储单元,可以按照常规方法对其进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。

3.2状态灯选择

该系统设计红、绿、黄状态灯显示的功能,用LED灯来代替实际的交通灯,由于有四种不同的运行状态,一个十字路口需要16个LED灯,倒计时数码管显示选用两位带片选的7段数码管,需要4个。数码管显示简单,程序简单,端口用的少。普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、等电源驱动点亮,它属于电流控制型,使用时需串接合适的限流电阻。

3.3系统硬件原理图设计

图3.2系统原理布置图

第四章 系统软件设计

4.1 程序流程图设计

图4.1主程序流程图

系统通电后,初始化定时器,进行24小时定时,在7:00到8:15或16:30到17:00时,按高峰时段运行。在6:30到7:00或8:15到16;30或18:00到19:00时,按正常时段运行。其余时段,按晚间时段运行。

图4.2 时钟及晚间时段程序流程图

本设计利用单片机的定时器T0中断来设置24小时定时,设置TH1=0x3C,TL1=0xB0.即每0.05秒中断一次。到第20次中断即过了20*0.05秒=1秒时,计60S时,满意1分钟,计满60分钟,满1小时,计满24小时,又重新开始计时。用定时器T1中断来设置数码管倒计时,每满1S时,使时间的计数值减1,便实现了倒计时的功能。

图4.3 高峰时段及正常时段流程图

4.2 系统编程

4.2.1定时器的中断设置

在单片机中,中断技术主要用于实时控制。所谓实时控制,就是要求计算机能及时地响应被控对象提出的分析、计算和控制等请求,使被控对象保持在最佳工作状态,以达到预定的控制效果。由于这些控制参量的请求都是随机发出的,而且要求单片机必须做出快速响应并及时处理,对此,只有靠中断技术才能实现。

本系统中的定时时钟及倒计时的设置和相应中断服务子程序如下:

/*24小时时钟 */

void Timer0Cofig(){

TMOD=0x01; //T0定时器工作方式

TH0=0x3C; //设置初始值,定时50MS

TL0=0xB0;

ET0=1; //定时器开中断

TR0=1; //启动定时器0

EA=1; //CPU开中断总允许

}

void T0int() interrupt 1{

TH0=0x3C; //设置初始值

TL0=0xB0;

second_counter++;

if(second_counter>=20){second++;second_counter=0;}

if(second>=60){minute++;second=0;}

if(minute>=60){hour++;minute=0;}

if(hour>=24){hour=0;}

}

/********倒数显示定时器*********/

void Timer1Cofig()

{

TMOD=0x01; //T1定时器工作方式

TH1=0x3C; //定时器初值50ms中断一次

TL1=0xB0;

ET1=1; //定时器开中断

TR1=1; //启动定时器1

EA=1; //CPU开中断总允许

}

/*定时器中断函数*/

void timer1() interrupt 3{

TH1=0x3C; //重新装入初值

TL1=0xB0;

RGY_second++;

if(RGY_second==20){

RGY_second=0;

Time_EW--;//满1秒,数码管值减1

Time_SN--;

}

}

第五章 系统调试与仿真

5.1 proteus仿真结果

根据系统设计要求,进行keil调试和proteus系统仿真,不断调试程序。发光二极管,数码管都能按要求显示,符合要求。proteus总体仿真图如下。

图5.1 仿真结果

基于单片机的十字路口交通信号灯控制系统设计与调试

第一章 控制要求

1.1 控制要求

(1)系统工作受开关控制,起动开关 ON 则系统工作;起动开关 OFF 则系统停止工作。

(2)控制对象有八个:

东西方向红灯两个 , 南北方向红灯两个,

东西方向黄灯两个 , 南北方向黄灯两个,

东西方向绿灯两个 , 南北方向绿灯两个,

东西方向左转弯绿灯两个,南北方向左转弯绿灯两个。

(3)另外东西方向、南北方向各设置显示两位十进制的7段显示器,用来显示倒数计数值。

1)高峰时段按时序图二(见附图)运行, 正常时段按时序图三(见附图)运行,晚上时段按提示警告方式运行,规律为: 东、南、西、北四个黄灯全部闪亮,其余灯全部熄灭。

高峰时段、正常时段及晚上时段的时序分配按时序图一运行(见附图)。

可以只选择高峰时段或正常时段进行设计,但最后评分值最高以良好评议;如果全部功能实现(需要设计一个24小时的时钟作为时段划分的基础),最高评分值以优秀评议。

时序图

第二章 系统方案设计

2.1交通灯运行状态分析

根据控制要求,系统以下图交通的运行状态来设计系统方案。

状态1南北直行;状态2南北左转; 状态3东西直行;状态4东西左转。

共有四种状态,分别设定为S1、S2、S3、S4,交通灯以这四种状态为一个周期。循环执行如图1.5所示:

图2.1 交通灯状态循环图

2.2系统总体方案设计

图2.2系统总体方案图

本系统采用MCS-51系列单片机AT89C51为中心器件来设计交通灯控制器,实现了正常、高峰、晚间时通过单片机的P1口设置红、绿、黄灯亮灭的功能。东西、南北两位7段显示器用来显示倒数计数值。系统分三种工作时段:正常、高峰、晚间,并且通过时间段来控制"正常"、"高峰"、"晚间"相互转化。

正常时段:南北段直行通行(绿灯)、东西段禁止(红灯)40s,同时南北段和东西段方向的数码管分别从40s和70s开始倒计时,至最后5s时南北段绿灯变成黄灯闪烁;此后南北段左转(左转绿灯亮)通行、东西段禁止(红灯)20s,同时南北段和东西段方向的数码管都从20s开始倒计时,至最后5s时南北段左转灯变成黄灯闪烁;再后东西段直行通行(绿灯)、南北段禁止(红灯)40s,同时东西段和南北段方向的数码管分别从40s和70s开始倒计时,至最后5s时东西段绿灯变成黄灯闪烁;最后东西段左转(左转绿灯亮)通行、南北段禁止(红灯)20s,同时东西段和南北段方向的数码管都从20s开始倒计时,至最后5s时东西段左转灯变成黄灯闪烁。

高峰时段:南北段、东西段的通行时间改为45s,左转的时间改为15s,其它与正常时段相同。

晚间时段:禁止左转和直行,东西南北四个方向黄灯闪亮。

第三章 系统电路设计

3.1控制芯片选择

图3.1 AT89C51引脚图

AT89C51是美国ATMEL公司生产的低电压,高性能CMOS 8位单片机,有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个可编程定时计数器,2个全双工串行通信口,2个读写口线,器件采用ATMEL公司的高密度、非易失性存储技术生产,与标准MCS-51指令系统及8051产品引脚兼容,片内置通用8位中央处理器(CPU)和Flash存储单元,可以按照常规方法对其进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。

3.2状态灯选择

该系统设计红、绿、黄状态灯显示的功能,用LED灯来代替实际的交通灯,由于有四种不同的运行状态,一个十字路口需要16个LED灯,倒计时数码管显示选用两位带片选的7段数码管,需要4个。数码管显示简单,程序简单,端口用的少。普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、等电源驱动点亮,它属于电流控制型,使用时需串接合适的限流电阻。

3.3系统硬件原理图设计

图3.2系统原理布置图

第四章 系统软件设计

4.1 程序流程图设计

图4.1主程序流程图

系统通电后,初始化定时器,进行24小时定时,在7:00到8:15或16:30到17:00时,按高峰时段运行。在6:30到7:00或8:15到16;30或18:00到19:00时,按正常时段运行。其余时段,按晚间时段运行。

图4.2 时钟及晚间时段程序流程图

本设计利用单片机的定时器T0中断来设置24小时定时,设置TH1=0x3C,TL1=0xB0.即每0.05秒中断一次。到第20次中断即过了20*0.05秒=1秒时,计60S时,满意1分钟,计满60分钟,满1小时,计满24小时,又重新开始计时。用定时器T1中断来设置数码管倒计时,每满1S时,使时间的计数值减1,便实现了倒计时的功能。

图4.3 高峰时段及正常时段流程图

4.2 系统编程

4.2.1定时器的中断设置

在单片机中,中断技术主要用于实时控制。所谓实时控制,就是要求计算机能及时地响应被控对象提出的分析、计算和控制等请求,使被控对象保持在最佳工作状态,以达到预定的控制效果。由于这些控制参量的请求都是随机发出的,而且要求单片机必须做出快速响应并及时处理,对此,只有靠中断技术才能实现。

本系统中的定时时钟及倒计时的设置和相应中断服务子程序如下:

/*24小时时钟 */

void Timer0Cofig(){

TMOD=0x01; //T0定时器工作方式

TH0=0x3C; //设置初始值,定时50MS

TL0=0xB0;

ET0=1; //定时器开中断

TR0=1; //启动定时器0

EA=1; //CPU开中断总允许

}

void T0int() interrupt 1{

TH0=0x3C; //设置初始值

TL0=0xB0;

second_counter++;

if(second_counter>=20){second++;second_counter=0;}

if(second>=60){minute++;second=0;}

if(minute>=60){hour++;minute=0;}

if(hour>=24){hour=0;}

}

/********倒数显示定时器*********/

void Timer1Cofig()

{

TMOD=0x01; //T1定时器工作方式

TH1=0x3C; //定时器初值50ms中断一次

TL1=0xB0;

ET1=1; //定时器开中断

TR1=1; //启动定时器1

EA=1; //CPU开中断总允许

}

/*定时器中断函数*/

void timer1() interrupt 3{

TH1=0x3C; //重新装入初值

TL1=0xB0;

RGY_second++;

if(RGY_second==20){

RGY_second=0;

Time_EW--;//满1秒,数码管值减1

Time_SN--;

}

}

第五章 系统调试与仿真

5.1 proteus仿真结果

根据系统设计要求,进行keil调试和proteus系统仿真,不断调试程序。发光二极管,数码管都能按要求显示,符合要求。proteus总体仿真图如下。

图5.1 仿真结果

相关问答

单片机 TH0 TL0和 TH1 TL1有什么区别?是定时器0和定时器1的区别吗?

TH0和TL0是控制定时/计数器T0的,TH1和TL1是针对T1的。也就是用TH0和TL0中的数来控制T0到底定时多久或计数多少再进入中断,TH1和TL1也一样。至于定时器T0和T1的...

单片机 --题设 单片机 晶振频率为12MHz,使用定时器T1以方式1产...

[最佳回答]TMOD=0x10;TH1=0xFC;L1=0x18;即为高电平时间为1ms.最大定时时间:2^16毫秒t=(2^16-计数初始值)X晶振周期X12.TMOD=0x10;TH1=0xFC;L1=0x...

51 单片机 t0t1由哪些寄存器组成?

51单片机定时器T0和T1的结构类似,都是由高低位两个寄存器组成,即TH0/TL0组成T0,TH1/TL1组成T1。T0和T1本身的工作机理很简单,都是高低位寄存器联合组成一个1...

单片机单片机单片机 串行口工作在方式1和方式3时,其波特率与...

[最佳回答]TH1=TH2=256-FOSC/16/12/BAUD

51 单片机 题目。这里的T0中断是什么意思?T0就是INT0吗?

T0中断就是定时器中断,也就是Timer0,分内部外部,内部用单片机本身的晶振频率,外部给单片机P3.4一个脉冲信号作为T0的定时器的工作频率,单片机内部有两个定时...

8051 单片机 定时器原理?

8051单片机定时器工作原理及用法TMOD:控制定时器的工作方式。8个bit,高四位bit控制T1,、低四位bit控制T0。因为定时器有4种工作方式;TMOD=0x00(工...

51 单片机 超声波避障程序?

time=TH1*256+TL1;这是用定时器T1做计数,time=TH1*256+TL1;这是根据定时器/计数器T1的计数值计算时间,TH1是计数器的高8位,计数结果当然要乘256倍了,再加上....

怎么进行 单片机 与PC机的串口数据读取通信?-ZOL问答

一头接单片机串口,一头接电脑串口,没有串口有那种串口转usb的口。程序么,就是设...ORG0000HLJMPMAINORG0030HMAIN:MOVTMOD,#20HMOVTH1,#...

单片机 中断里的程序可以有个10ms的延时么?

可以作定时器中断方式延时10ms,举例说明如下:51系统单片机晶振频率12MHz,机器周期T=12/Fosc=12/(12x10^6Hz)=1μs计数值=10ms/1μs=10000,...

单片机 片内ram20h单元的最低地址为何值

[回答]21个SFRACC累加器B用于辅助累加器做某些运算的寄存器PSW程序状态字其中最高位是进/借位标志C;PSW.6是辅助进位标志AC,用于标识加减运算中低...

猜你喜欢