设计与开发

单片机的架构 干货 一文搞懂单片机应用程序架构

小编 2024-10-06 设计与开发 23 0

干货 一文搞懂单片机应用程序架构

对于单片机程序来说,大家都不陌生,但是真正使用架构,考虑架构的恐怕并不多,随着程序开发的不断增多,本人觉得架构是非常必要的。前不就发帖与大家一起讨论了一下怎样架构你的单片机程序,发现真正使用架构的并不都,而且这类书籍基本没有。

本人经过摸索实验并总结,大致应用程序的架构有三种:

1. 简单的前后台顺序执行程序,这类写法是大多数人使用的方法,不需用思考程序的具体架构,直接通过执行顺序编写应用程序即可。

2. 时间片轮询法,此方法是介于顺序执行与操作系统之间的一种方法。

3. 操作系统,此法应该是应用程序编写的最高境界。

下面就分别谈谈这三种方法的利弊和适应范围等。

1

顺序执行法:

这种方法,这应用程序比较简单,实时性,并行性要求不太高的情况下是不错的方法,程序设计简单,思路比较清晰。但是当应用程序比较复杂的时候,如果没有一个完整的流程图,恐怕别人很难看懂程序的运行状态,而且随着程序功能的增加,编写应用程序的工程师的大脑也开始混乱。即不利于升级维护,也不利于代码优化。本人写个几个比较复杂一点的应用程序,刚开始就是使用此法,最终虽然能够实现功能,但是自己的思维一直处于混乱状态。导致程序一直不能让自己满意。

这种方法大多数人都会采用,而且我们接受的教育也基本都是使用此法。对于我们这些基本没有学习过数据结构,程序架构的单片机工程师来说,无疑很难在应用程序的设计上有一个很大的提高,也导致了不同工程师编写的应用程序很难相互利于和学习。

本人建议,如果喜欢使用此法的网友,如果编写比较复杂的应用程序,一定要先理清头脑,设计好完整的流程图再编写程序,否则后果很严重。当然应该程序本身很简单,此法还是一个非常必须的选择。

下面就写一个顺序执行的程序模型,方面和下面两种方法对比:

/*************************************************************************************** FunctionName : main()* Description : 主函数* EntryParameter : None* ReturnValue : None**************************************************************************************/int main(void) { uint8 keyValue; InitSys(); // 初始化 while (1) { TaskDisplayClock(); keyValue = TaskKeySan(); switch (keyValue) { case x: TaskDispStatus(); break; ... default: break; } }}

复制代码

2

时间片轮询法

时间片轮询法,在很多书籍中有提到,而且有很多时候都是与操作系统一起出现,也就是说很多时候是操作系统中使用了这一方法。不过我们这里要说的这个时间片轮询法并不是挂在操作系统下,而是在前后台程序中使用此法。也是本贴要详细说明和介绍的方法。

对于时间片轮询法,虽然有不少书籍都有介绍,但大多说得并不系统,只是提提概念而已。下面本人将详细介绍本人模式,并参考别人的代码建立的一个时间片轮询架构程序的方法,我想将给初学者有一定的借鉴性。

记得在前不久本人发帖《1个定时器多处复用的问题》,由于时间的问题,并没有详细说明怎样实现1个定时器多处复用。在这里我们先介绍一下定时器的复用功能。

使用1个定时器,可以是任意的定时器,这里不做特殊说明,下面假设有3个任务,那么我们应该做如下工作:

1. 初始化定时器,这里假设定时器的定时中断为1ms(当然你可以改成10ms,这个和操作系统一样,中断过于频繁效率就低,中断太长,实时性差)。

2. 定义一个数值:

#define TASK_NUM (3) // 这里定义的任务数为3,表示有三个任务会使用此定时器定时。uint16 TaskCount[TASK_NUM] ; // 这里为三个任务定义三个变量来存放定时值uint8 TaskMark[TASK_NUM]; // 同样对应三个标志位,为0表示时间没到,为1表示定时时间到。

复制代码

3. 在定时器中断服务函数中添加:

/*************************************************************************************** FunctionName : TimerInterrupt()* Description : 定时中断服务函数* EntryParameter : None* ReturnValue : None**************************************************************************************/void TimerInterrupt(void){ uint8 i; for (i=0; i<TASKS_NUM; i++) { if (TaskCount[i]) { TaskCount[i]--; if (TaskCount[i] == 0) { TaskMark[i] = 0x01; } } }}

复制代码

代码解释:定时中断服务函数,在中断中逐个判断,如果定时值为0了,表示没有使用此定时器或此定时器已经完成定时,不着处理。否则定时器减一,知道为零时,相应标志位值1,表示此任务的定时值到了。

4. 在我们的应用程序中,在需要的应用定时的地方添加如下代码,下面就以任务1为例:

TaskCount[0] = 20; // 延时20msTaskMark[0] = 0x00; // 启动此任务的定时器

复制代码

到此我们只需要在任务中判断TaskMark[0] 是否为0x01即可。其他任务添加相同,至此一个定时器的复用问题就实现了。用需要的朋友可以试试,效果不错哦。

通过上面对1个定时器的复用我们可以看出,在等待一个定时的到来的同时我们可以循环判断标志位,同时也可以去执行其他函数。

循环判断标志位:

那么我们可以想想,如果循环判断标志位,是不是就和上面介绍的顺序执行程序是一样的呢?一个大循环,只是这个延时比普通的for循环精确一些,可以实现精确延时。

执行其他函数:

那么如果我们在一个函数延时的时候去执行其他函数,充分利用CPU时间,是不是和操作系统有些类似了呢?但是操作系统的任务管理和切换是非常复杂的。下面我们就将利用此方法架构一直新的应用程序。

时间片轮询法的架构:

1.设计一个结构体:

// 任务结构typedef struct _TASK_COMPONENTS{ uint8 Run; // 程序运行标记:0-不运行,1运行 uint8 Timer; // 计时器 uint8 ItvTime; // 任务运行间隔时间 void (*TaskHook)(void); // 要运行的任务函数} TASK_COMPONENTS; // 任务定义

复制代码

这个结构体的设计非常重要,一个用4个参数,注释说的非常详细,这里不在描述。

2. 任务运行标志出来,此函数就相当于中断服务函数,需要在定时器的中断服务函数中调用此函数,这里独立出来,并于移植和理解。

/*************************************************************************************** FunctionName : TaskRemarks()* Description : 任务标志处理* EntryParameter : None* ReturnValue : None**************************************************************************************/void TaskRemarks(void){ uint8 i; for (i=0; i<TASKS_MAX; i++) // 逐个任务时间处理 { if (TaskComps[i].Timer) // 时间不为0 { TaskComps[i].Timer--; // 减去一个节拍 if (TaskComps[i].Timer == 0) // 时间减完了 { TaskComps[i].Timer = TaskComps[i].ItvTime; // 恢复计时器值,从新下一次 TaskComps[i].Run = 1; // 任务可以运行 } } }}

复制代码

大家认真对比一下次函数,和上面定时复用的函数是不是一样的呢?

3. 任务处理

/*************************************************************************************** FunctionName : TaskProcess()* Description : 任务处理* EntryParameter : None* ReturnValue : None**************************************************************************************/void TaskProcess(void){ uint8 i; for (i=0; i<TASKS_MAX; i++) // 逐个任务时间处理 { if (TaskComps[i].Run) // 时间不为0 { TaskComps[i].TaskHook(); // 运行任务 TaskComps[i].Run = 0; // 标志清0 } } }

复制代码

此函数就是判断什么时候该执行那一个任务了,实现任务的管理操作,应用者只需要在main()函数中调用此函数就可以了,并不需要去分别调用和处理任务函数。

到此,一个时间片轮询应用程序的架构就建好了,大家看看是不是非常简单呢?此架构只需要两个函数,一个结构体,为了应用方面下面将再建立一个枚举型变量。

下面我就就说说怎样应用吧,假设我们有三个任务:时钟显示,按键扫描,和工作状态显示。

1. 定义一个上面定义的那种结构体变量

/*************************************************************************************** Variable definition **************************************************************************************/static TASK_COMPONENTS TaskComps[] = { {0, 60, 60, TaskDisplayClock}, // 显示时钟 {0, 20, 20, TaskKeySan}, // 按键扫描 {0, 30, 30, TaskDispStatus}, // 显示工作状态 // 这里添加你的任务。。。。};

复制代码

在定义变量时,我们已经初始化了值,这些值的初始化,非常重要,跟具体的执行时间优先级等都有关系,这个需要自己掌握。

①大概意思是,我们有三个任务,没1s执行以下时钟显示,因为我们的时钟最小单位是1s,所以在秒变化后才显示一次就够了。

②由于按键在按下时会参数抖动,而我们知道一般按键的抖动大概是20ms,那么我们在顺序执行的函数中一般是延伸20ms,而这里我们每20ms扫描一次,是非常不错的出来,即达到了消抖的目的,也不会漏掉按键输入。

③为了能够显示按键后的其他提示和工作界面,我们这里设计每30ms显示一次,如果你觉得反应慢了,你可以让这些值小一点。后面的名称是对应的函数名,你必须在应用程序中编写这函数名称和这三个一样的任务。

2. 任务列表

// 任务清单typedef enum _TASK_LIST{ TAST_DISP_CLOCK, // 显示时钟 TAST_KEY_SAN, // 按键扫描 TASK_DISP_WS, // 工作状态显示 // 这里添加你的任务。。。。 TASKS_MAX // 总的可供分配的定时任务数目} TASK_LIST;

复制代码

好好看看,我们这里定义这个任务清单的目的其实就是参数TASKS_MAX的值,其他值是没有具体的意义的,只是为了清晰的表面任务的关系而已。

3. 编写任务函数

/*************************************************************************************** FunctionName : TaskDisplayClock()* Description : 显示任务* EntryParameter : None* ReturnValue : None**************************************************************************************/void TaskDisplayClock(void){}/*************************************************************************************** FunctionName : TaskKeySan()* Description : 扫描任务* EntryParameter : None* ReturnValue : None**************************************************************************************/void TaskKeySan(void){}/*************************************************************************************** FunctionName : TaskDispStatus()* Description : 工作状态显示* EntryParameter : None* ReturnValue : None**************************************************************************************/void TaskDispStatus(void){}// 这里添加其他任务。

复制代码

现在你就可以根据自己的需要编写任务了。

4. 主函数

/*************************************************************************************** FunctionName : main()* Description : 主函数* EntryParameter : None* ReturnValue : None**************************************************************************************/int main(void) { InitSys(); // 初始化 while (1) { TaskProcess(); // 任务处理 }}

复制代码

到此我们的时间片轮询这个应用程序的架构就完成了,你只需要在我们提示的地方添加你自己的任务函数就可以了。是不是很简单啊,有没有点操作系统的感觉在里面?

不防试试把,看看任务之间是不是相互并不干扰?并行运行呢?当然重要的是,还需要,注意任务之间进行数据传递时,需要采用全局变量,除此之外还需要注意划分任务以及任务的执行时间,在编写任务时,尽量让任务尽快执行完成。

3

操作系统:

操作系统的本身是一个比较复杂的东西,任务的管理,执行本事并不需要我们去了解。但是光是移植都是一件非常困难的是,虽然有人说过“你如果使用过系统,将不会在去使用前后台程序”。但是真正能使用操作系统的人并不多,不仅是因为系统的使用本身很复杂,而且还需要购买许可证(ucos也不例外,如果商用的话)。

这里本人并不想过多的介绍操作系统本身,因为不是一两句话能过说明白的,下面列出UCOS下编写应该程序的模型。大家可以对比一下,这三种方式下的各自的优缺点。

/*************************************************************************************** FunctionName : main()* Description : 主函数* EntryParameter : None* ReturnValue : None**************************************************************************************/int main(void) { OSInit(); // 初始化uCOS-II OSTaskCreate((void (*) (void *)) TaskStart, // 任务指针 (void *) 0, // 参数 (OS_STK *) &TaskStartStk[TASK_START_STK_SIZE - 1], // 堆栈指针 (INT8U ) TASK_START_PRIO); // 任务优先级 OSStart(); // 启动多任务环境 return (0); }

复制代码

/*************************************************************************************** FunctionName : TaskStart() * Description : 任务创建,只创建任务,不完成其他工作* EntryParameter : None* ReturnValue : None**************************************************************************************/void TaskStart(void* p_arg){ OS_CPU_SysTickInit(); // Initialize the SysTick. #if (OS_TASK_STAT_EN > 0) OSStatInit(); // 这东西可以测量CPU使用量 #endif OSTaskCreate((void (*) (void *)) TaskLed, // 任务1 (void *) 0, // 不带参数 (OS_STK *) &TaskLedStk[TASK_LED_STK_SIZE - 1], // 堆栈指针 (INT8U ) TASK_LED_PRIO); // 优先级 // Here the task of creating your while (1) { OSTimeDlyHMSM(0, 0, 0, 100); }}

复制代码

不难看出,时间片轮询法优势还是比较大的,即由顺序执行法的优点,也有操作系统的优点。结构清晰,简单,非常容易理解。

单片机的基本结构与特点

单片机在结构设计上,以及硬件、指令系统、I/O能力等方面都有明显的特点,在此简要说明一下。

1.程序存储器和数据存储器分开

单片机的数据存储器和程序存储器在存储器空间上是严格分开的,ROM用来存放程序代码、常数和数据表格,RAM用来存放数据或中间结果。采用这样的存储器结构,主要是考虑到单片机用于控制的特点,在过程控制中需要较大的程序存储器空间和较小的随机数据空间,而且还允许单片机应用系统扩展存储空间,因此单片机既有内部ROM又有外部ROM,既有内部RAM又有外部RAM。所以,CPU进行存储器操作时就要区分内部程序存储器和外部程序存储器;对程序存储器和数据存储器访问时要使用不同的寻址方式、指令助记符和存储器访问信号;要使用两个或多个地址指针来寻找数据。

2.I/O端口多功能分时复用

由于大规模集成电路和生产工艺的要求,芯片的引脚数受到一定的限制,为了解决实际的引脚数和需要的引脚信号之间的矛盾,单片机的部分引线被设计成多功能的。如MCS-51的P0口、P2 E1和P3 E1的引脚都是多功能,如P0口是8位数据线和地址线的低8位共用,P2 El是通用I/O口并与地址线的高8位分时复用,P3 E1是通用I/O口,还具有第二功能。每条引脚在一定时间起什么作用,则由指令和机器状态来决定。所以,单片机对外不存在专门的数据线和控制线,而是采用分时复用技术来解决片外数据和地址的传送问题。

3.片内特殊功能寄存器和工作寄存器组

在MCS-51单片机片内RAM中,还有21个具有特殊功能的寄存器,以及4组8位工作寄存器,每组7个,共有28个8位的工作寄存器,为CPU进行运算、存放中间结果提供了极大的方便。正是有了这些特殊功能寄存器和工作寄存器,才能使一个只有40脚封装的单片机系统的功能获得很大的扩充,并使I/O El在程序控制下具有第二功能。利用特殊功能寄存器还可以完成对定时器斛数器、串行口和中断逻辑的控制。

4.片内有全双工串行通信接口

MCS-51单片机是一种集成的电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。 MCS一51单片机的另一个特点是在内部有一个全双工的串行接口。在程序的控制下,串行口有4种工作方式。用户可根据需要将它设定为移位寄存器方式,以扩充I/O接口和外接同步输入、输出设备;或用做异步通信接口,以实现双机或多机通信。因此,单片机能极为方便地组成分布式控制系统。

5.独立的位处理器

在单片机内部有一个能独立进行操作的位处理器,又称为布尔处理器,它有自己的累加器以及可按位寻址的RAM区、特殊功能寄存器和I/0 E1,并设有专门的按位操作的指令。利用位操作功能,可以十分方便地进行组合逻辑的设计和用软件模拟组合逻辑的功能。

单片机主要具有以下特点:

(1)体积小、结构简单、可靠性高 单片机把各功能部件集成在一个芯片上,内部采用总线结构,减少了各芯片之间的连线,大大提高了单片机的可靠性与抗干扰能力。另外,其体积小,对于强磁场环境易于采取屏蔽措施,适合在恶劣环境下工作。

(2)控制能力强 单片机虽然结构简单,但是它“五脏俱全”,已经具备了足够的控制功能。单片机具有较多的I/O口,CPU可以直接对I/O进行操作、算术操作、逻辑操作和位操作,指令简单而丰富。所以单片机也是“面向控制”的计算机。

(3)低电压、低功耗 单片机可以在2.2V的电压下运行,有的已能在1.2V或0.9V下工作;功耗降至为μA级,一颗纽扣电池就可长期使用。

(4)优异的性能/价格比 由于单片机构成的硬件结构简单、开发周期短、控制功能强、可靠性高,因此,在达到同样功能的条件下,用单片机开发的控制系统比用其它类型的微型计算机开发的控制系统价格更便宜。

(5)易扩展。可根据需要并行或串行扩展,构成各种不同应用规模的计算机控制系统。

相关问答

单片机的 体系结构是什么?

MCS-51系列单片机,属于哈佛结构体系体系结构。哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。中央处理器首先到程序指令存储器中读取程序指令内...

单片机 程序设计四种结构?

单片机程序有:顺序,条件,循环,选择四种结构。单片机程序有:顺序,条件,循环,选择四种结构。

什么是 单片机 应用系统?二者是什么关系? - 145****5662 的...

单片机是一种路芯片,模集成电路技术把具有数处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱...

51 单片机的 基本结构?

51系统单片机基本结构8051系列单片机的内部结构是各种逻辑单元及其之间的互连构成的。其主要由中央处理器cpu,程序存储器ROM、数据存储器Ram、串行接口、...

单片机 开发系统的构成及各部分的作用-ZOL问答

以单片机为核心,再配合其它外部电路组成的控制系统称为单片机系统单片机开发一般要求硬件和软件都要在行,因为单片机开发面向的都是最底层的开发,硬件方面可以...

单片机的 定义是什么?它与一般微型计算机在结构上..._结构工...

单片机是一种集成了微处理器、存储器、输入输出接口和其他外围设备的微型计算机系统,具有独立的运行能力和控制能力。它通常被用于控制和监测各种电...

pic 单片机 哪种 架构 ?

PIC单片机采用的是哈佛架构,其特点是程序和数据存储在不同的存储器中,程序存储器和数据存储器分别提供不同的地址总线,这使得程序和数据可以同时访问,提高了...

8051 单片机的 内部结构由哪八个部分等构成?

8051单片机:1、有一个CPU用来运算和控制,2、有四个并行IO口,分别是P0、P1、P2、P3,3、有ROM,用来存放程序,现在也有用flash的4、有RAM,用来存放中间结...

单片机 存储器结构与原理?

一、51单片机存储器采用的是哈佛结构,即是程序存储器空间和数据存储器空间分开,程序存储器和数据存储器各自有自己的寻址方式、寻址空间和控制系统。二、51存...

51 单片机 内部逻辑结构?

8051系列单片机的内部结构是各种逻辑单元及其之间的互连构成的。其主要由中央处理器cpu,程序存储器ROM、数据存储器Ram、串行接口、并行I/O接口,定时/计数器...

猜你喜欢