技术文档

单片机汇编 单片机入门-要从汇编开始

小编 2024-11-24 技术文档 23 0

单片机入门-要从汇编开始

简介

单片机 是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器、显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等功能集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。单片机的发展先后经历了4位、8位、16位和32位等阶段。8位单片机由于功能强,被广泛用于工业控制、智能接口、仪器仪表等各个领域,8位单片机在中、小规模应用场合仍占主流地位,代表了单片机的发展方向,在单片机应用领域发挥着越来越大的作用。

51单片机

单片机的开发主要包括CPU开发、程序开发、 存储器开发、计算机开发及C语言程序开发,同时得到开发能够保证单片机在十分复杂的计算机与控制环境中可以正常有序的进行。程序开发嵌入式系统的合理应用得到了大力推广,对程序进行开发时要求能够自动执行各种指令,这样可以快速准确地采集外部数据,提高单片机的应用效率。

为啥选汇编入门

很多电子爱好者都想学习单片机这门技术,初学者入门从底层硬件入手基于汇编和c两种语言,详细的介绍了单片机的原理,指令,寄存器,以及接口等,后面还为你准备了一些小的设计。都是从单片机最基本的东西讲起,相信你一定能看懂,并且学会单片机这门有意思的技术,有什么问题可在文章后面的评论留言。

初学单片机汇编有利于深入结构的了解,但是真正工作的时候,用的是C语言;汇编语言一般只在处理器启动的时候用一下,或C语言插入汇编的调用,之后就全是C语言,汇编移植性太差,但是它的效率高,时间精度能控制好。一般汇编都不需要你自己写,拿来用就行,主要还是C语言。可以肯定的告诉 你,99%用C语言。

51单片机开发板

现在单片机的编程大多 是C语言完成

但有时代码中必须嵌入汇编语言解决某些特定的问题

对于程序调试 汇编语言更是不可或缺。

直接使用汇编指令编写单片机程序,对硬件的控制更加直接,可以直接操作物理地址,寄存器,端口等;其它更高级的语言(如:C语言)对硬件的控制是依赖于类库来实现的。并且,对于一些对程序大小和运行速度有非常严苛要求的项目而言,都必须使用汇编指令。C语言只是为了方便编写,与机器打交道的其实都是2进制得代码,汇编语言就是这些代码好记忆的名称和规则,只是比C语言难理解些。

单片机

单片机最小系统

包括电源电路时钟晶振电路复位电路

时钟晶振电路、复位电路

程序存储器中有七个特设的地址,其功能分别是用于:0000H 复位时ROM的地址;0003H 外部中断0入口地址;000BH 定时器计数器0溢出中断入口地址;0013H 外部中断1入口地址;001BH 定时器计数器1溢出中断入口地址;0023H串行口中断入口地址;002BH 定时/计数器2溢出中断入口地址。

0000H地址是单片机复位时的PC地址,从0000H开始执行程序。

其他6个地址是单片机相应不同的中断时,所跳向对应的入口地址。

该表也叫中断向量表或称中断向量,在写程序时,这些地址不要占用。使用时一般在这6个地址写跳转指令,如AJMP,LMJP等等。

单片机汇编指令

为解决某些特定的问题代码中必须嵌入汇编语言以代替C语言完成的单片机的编程,汇编语言对于程序调试是不可或缺的。它包括:算术操作类指令,布尔变量操作类指令,逻辑操作数指令,控制转移类指令。

常用单片机汇编指令:

1 .MOV A,Rn 寄存器内容送入累加器

2 .MOV A,direct 直接地址单元中的数据送入累加器

3 .MOV A,@Ri (i=0,1)间接RAM 中的数据送入累加器

4 .MOV A,#data 立即数送入累加器

5 .MOV Rn,A 累加器内容送入寄存器

6 .MOV Rn,direct 直接地址单元中的数据送入寄存器

7 .MOV Rn,#data 立即数送入寄存器

8 .MOV direct,A 累加器内容送入直接地址单元

9 .MOV direct,Rn 寄存器内容送入直接地址单元

布尔变量操作类指令:

1. CLR C 清进位位

2 .CLR bit 清直接地址位

3 .SETB C 置进位位

4 .SETB bit 置直接地址位

控制转移类指令

1. ACALL addr11 绝对(短)调用子程序

2 .LCALL addr16 长调用子程序

3 .RET 子程序返回

4 .RETI 中断返回

5 .AJMP addr11 绝对(短)转移

6 .LJMP addr16 长转移

7 .SJMP rel 相对转移

8 .JMP @A+DPTR 相对于DPTR 的间接转移

9. JZ rel 累加器为零转移

10. JNZ rel 累加器非零转移

11. CJNE A,direct,rel 累加器与直接地址单元比较,不相等则转移

12 .CJNE A,#data,rel 累加器与立即数比较,不相等则转移

13 .CJNE Rn,#data,rel 寄存器与立即数比较,不相等则转移

14 .CJNE @Ri,#data,rel 间接RAM 单元与立即数比较,不相等则转移

15 .DJNZ Rn,rel 寄存器减1,非零转移

16 .DJNZ direct,rel 直接地址单元减1,非零转移

17 .NOP 空操作

闪烁灯汇编代码

流程图

闪烁灯汇编代码:

ORG 0000H ;初始地址

LJMP A0A0 ;跳转至I/O初始化

ORG 002BH

A0A0:MOV P0,#0FFH ;P0口初始化

MOV P1,#0FFH ;P1口初始化

MOV P2,#0FFH ;P2口初始化

MOV P3,#0FFH ;P3口初始化

A0A1:SETB P1.5 ;P1.5置1(高电平)

LCALL DELA0 ;调用延时

CLR P1.5 ;P1.5清0(低电平)

LCALL DELA0 ;调用延时

LJMP A0A1 ;跳转至开头循环

DELA0:MOV 68H,#5 ;延时

DELA1:MOV 67H,#248

DELA2:MOV 66H,#250

DJNZ 66H,$

DJNZ 67H,DELA2

DJNZ 68H,DELA1

RET

END

闪烁灯电路_亮

闪烁灯电路_灭

汇编入门第一篇,小白也能看懂

cxuan自己的 Github 非常硬核,求各位大佬 star: https://github.com/crisxuan/bestJavaer

汇编代码是计算机的一种低级表示,它是一种低级语言,可以从字面角度去理解它,包括处理数据、管理内存、读写存储设备上的数据,以及利用网络通信等。编译器生成机器码经过了一系列的转换,这些转换遵循编程语言、目标机器的指令集 和操作系统。

指令集

指令集就是指挥计算机工作的指令,因为程序就是按照一定执行顺序排列的指令。因为计算机的执行控制权由 CPU 操作,所以指令集就是 CPU 中用来计算和控制计算机的一系列指令的集合。每个 CPU 在产出时都规定了与硬件电路相互配合工作的指令集。

指令集有不少分类,但是一般分为两种,一种是精简指令集,一种是复杂指令集。具体描述如下

精简指令集

精简指令的英文是 reduced instruction set computer, RISC,原意是精简指令集计算,简称为精简指令集,是 CPU 的一种 设计模式,可以把 CPU 想象成一家流水线工厂,对指令数目和寻址方式都做了精简,使其实现更容易,指令并行执行程度更好,编译器的效率更高。

常见的精简指令集处理器包括 ARM、AVR、MIPS、PARISC、RISC-V 和 SPARC

所以你就能理解

这本书是讲啥的了。

它主要是基于 MIPS 体系结构把冯诺依曼体系的五大组件进行了逐一的硬件实现 + 软件设计介绍,更为重要的是引入了诸多并行计算的内容,这是大部分教材中忽略或者内容较少的,会根据这个思路把并行相关的内容,结合 OpenMP, CUDA 和 Hadoop/Spark 整体融入到新书中,毕竟这是未来发展的趋势

还有这本书

这本书又是讲啥的。

这本书是讲 RISC-V 指令集的,因为指令集的不同也区分了三个版本,三个版本???嗯,还有下面这个

这本书是讲 ARM 指令集的。

所以一般在看 CASPP 的时候并发的看看这本书是非常不错的选择。

精简指令集一般具有如下特征

统一的指令编码通用的寄存器,一般会区分整数和浮点数简单的寻址模式,复杂寻址模式被简单指令序列来取代支持很少偏门的类型,例如 RISC 支持字节字符串类型。

复杂指令集

复杂指令集的英文是 Complex Instruction Set Computing, CISC,是一种微处理器指令集架构,也被译为复杂指令集。

复杂指令集包括 System/360、VAX、x86 等

复杂指令集可以说是在精简指令集之上作出的改变。

复杂指令集的特点是指令数目多而复杂,每条指令字长并不相等,计算机必须加以判读,并为此付出了性能的代价。

一般来说,提升 CPU 性能的方法有如下这几种

增加寄存器的大小增进内部的并行性增加高速缓存的大小增加核心时脉的速度加入其他功能,例如 IO 和计时器加入向量处理器硬件多线程技术

比较抽象,我们后面会组织成文章具体介绍一下。

C 编译器会接收其他操作并把其转换为汇编语言输出,汇编语言是机器级别的代码表示。我们之前介绍过,C 语言程序的执行过程分为下面这几步

下面我们更多的讨论都是基于汇编代码来讨论。

我们日常所接触的高级语言,都是经过了层层封装的结果,所以我们平常是接触不到汇编语言的,更不会用汇编语言来进行编程,这就和你不知道操作系统的存在一样,但其实你每个操作,甚至你双击一个图标都和操作系统有关系。

高级语言的抽象级别很高,但是经过了层层抽象之后,高级语言的执行效率肯定没有汇编语言高,也没有汇编语言可靠。

但是高级语言有更大的优点是其编译后能够在不同的机器上运行,汇编语言针对不同的指令集有不同的表示。并且高级语言学习来更加通俗易懂,降低计算机门槛,让内卷更加严重(当然这是开个玩笑,冒犯到请别当真)。

话不多说,了解底层必须了解汇编语言。否则一个 synchronized 底层实现就能够让你头疼不已。而且,天天飘着也不好,迟早要落地。

了解汇编代码也有助于我们优化程序代码,分析代码中隐含的低效率,并且这种优化方法一旦优化成功,将是量级的提高,而不是改改 if...else ,使用一个新特性所能比的。

机器级代码

计算机系统使用了多种不同形式的抽象,可以通过一个简单的抽象模型来隐藏实现细节。对于机器级别的程序来说,有两点非常重要。

首先第一点,定义机器级别程序的格式和行为被称为 指令集体系结构或指令集架构(instruction set architecture), ISA。ISA 定义了进程状态、指令的格式和每一个指令对状态的影响。大部分的指令集架构包括 ISA 用来描述进程的行为就好像是顺序执行的,一条指令执行结束后,另外一条指令再开始。处理器硬件的描述要更复杂,它可以同时并行执行许多指令,但是它采用了安全措施来确保整体行为与 ISA 规定的顺序一致。

第二点,机器级别对内存地址的描述就是 虚拟地址(virtual address),它提供了一个内存模型来表示一个巨大的字节数组。

编译器在整个编译的过程中起到了至关重要的作用,把 C 语言转换为处理器执行的基本指令。汇编代码非常接近于机器代码,只不过与二进制机器代码相比,汇编代码的可读性更强,所以理解汇编是理解机器工作的第一步。

一些进程状态对机器可见,但是 C 语言程序员却看不到这些,包括

程序计数器(Program counter),它存储下一条指令的地址,在 x86-64 架构中用 %rip 来表示。

程序执行时,PC 的初始值为程序第一条指令的地址,在顺序执行程序时, CPU 首先按程序计数器所指出的指令地址从内存中取出一条指令,然后分析和执行该指令,同时将 PC 的值加 1 并指向下一条要执行的指令。

比如下面一个例子。

这是一段数值进行相加的操作,程序启动,在经过编译解析后会由操作系统把硬盘中的程序复制到内存中,示例中的程序是将 123 和 456 执行相加操作,并将结果输出到显示器上。由于使用机器语言难以描述,所以这是经过翻译后的结果,实际上每个指令和数据都可能分布在不同的地址上,但为了方便说明,把组成一条指令的内存和数据放在了一个内存地址上。

整数寄存器文件(register file)包含 16 个命名的位置,用来存储 64 位的值。这些寄存器可以存储地址和整型数据。有些寄存器用于跟踪程序状态,而另一些寄存器用于保存临时数据,例如过程的参数和局部变量,以及函数要返回的值。这个 文件 是和磁盘文件无关的,它只是 CPU 内部的一块高速存储单元。有专用的寄存器,也有通用的寄存器用来存储操作数。条件码寄存器 用来保存有关最近执行的算术或逻辑指令的状态信息。这些用于实现控件或数据流中的条件更改,例如实现 if 和 while 语句所需的条件更改。我们都学过高级语言,高级语言中的条件控制流程主要分为三种:顺序执行、条件分支、循环判断三种,顺序执行是按照地址的内容顺序的执行指令。条件分支是根据条件执行任意地址的指令。循环是重复执行同一地址的指令。顺序执行的情况比较简单,每执行一条指令程序计数器的值就是 + 1。条件和循环分支会使程序计数器的值指向任意的地址,这样一来,程序便可以返回到上一个地址来重复执行同一个指令,或者跳转到任意指令。

下面以条件分支为例来说明程序的执行过程(循环也很相似)

程序的开始过程和顺序流程是一样的,CPU 从 0100 处开始执行命令,在 0100 和 0101 都是顺序执行,PC 的值顺序+1,执行到 0102 地址的指令时,判断 0106 寄存器的数值大于 0,跳转(jump)到 0104 地址的指令,将数值输出到显示器中,然后结束程序,0103 的指令被跳过了,这就和我们程序中的 if() 判断是一样的,在不满足条件的情况下,指令会直接跳过。所以 PC 的执行过程也就没有直接+1,而是下一条指令的地址。

一组 向量寄存器用来存储一个或者多个整数或者浮点数值,向量寄存器是对一维数据上进行操作。

机器指令只会执行非常简单的操作,例如将存放在寄存器的两个数进行相加,把数据从内存转移到寄存器中或者是条件分支转移到新的指令地址。编译器必须生成此类指令的序列,以实现程序构造,例如算术表达式求值,循环或过程调用和返回

认识汇编

我相信各位应该都知道汇编语言的出现背景吧,那就是二进制表示数据,太复杂太庞大了,为了解决这个问题,出现了汇编语言,汇编语言和机器指令的区别就在于表示方法上,汇编使用操作数来表示,机器指令使用二进制来表示,我之前多次提到机器码就是汇编,你也不能说我错,但是不准确。

但是汇编适合二进制代码存在转换关系的。

汇编代码需要经过 汇编器 编译后才产生二进制代码,这个二进制代码就是目标代码,然后由链接器将其连接起来运行。

汇编语言主要分为以下三类

汇编指令:它是一种机器码的助记符,它有对应的机器码伪指令:没有对应的机器码,由编译器执行,计算机并不执行其他符号,比如 +、-、*、/ 等,由编译器识别,没有对应的机器码

汇编语言的核心是汇编指令,而我们对汇编的探讨也是基于汇编指令展开的。

与汇编有关的硬件和概念

CPU

CPU 是计算机的大脑,它也是整个计算机的核心,它也是执行汇编语言的硬件,CPU 的内部包含有寄存器,而寄存器是用于存储指令和数据的,汇编语言的本质也就是 CPU 内部操作数所执行的一系列计算。

内存

没有内存,计算机就像是一个没有记忆的人类,只会永无休止的重复性劳动。CPU 所需的指令和数据都由内存来提供,CPU 指令经由内存提供,经过一系列计算后再输出到内存。

磁盘

磁盘也是一种存储设备,它和内存的最大区别在于永久存储,程序需要在内存装载后才能运行,而提供给内存的程序都是由磁盘存储的。

总线

一般来说,内存内部会划分多个存储单元,存储单元用来存储指令和数据,就像是房子一样,存储单元就是房子的门牌号。而 CPU 与内存之间的交互是通过地址总线来进行的,总线从逻辑上分为三种

地址线数据线控制线

CPU 与存储器之间的读写主要经过以下几步

读操作步骤

CPU 通过地址线发出需要读取指令的位置CPU 通过控制线发出读指令内存把数据放在数据线上返回给 CPU

写操作步骤

CPU 通过地址线发出需要写出指令的位置CPU 通过控制线发出写指令CPU 把数据通过数据线写入内存

下面我们就来具体了解一下这三类总线

地址总线

通过我们上面的探讨,我们知道 CPU 通过地址总线来指定存储位置的,地址总线上能传送多少不同的信息,CPU 就可以对多少个存储单元进行寻址。

上图中 CPU 和内存中间信息交换通过了 10 条地址总线,每一条线能够传递的数据都是 0 或 1 ,所以上图一次 CPU 和内存传递的数据是 2 的十次方。

所以,如果 CPU 有 N 条地址总线,那么可以说这个地址总线的宽度是 N 。这样 CPU 可以寻找 2 的 N 次方个内存单元。

数据总线

CPU 与内存或其他部件之间的数据传送是由数据总线来完成的。数据总线的宽度决定了 CPU 和外界的数据传输速度。8 根数据总线可以一次传送一个 8 位二进制数据(即一个字节)。16 根数据总线一次可以传输两个字节,32 根数据总线可以一次传输四个字节。。。。。。

控制总线

CPU 与其他部件之间的控制是通过 控制总线 来完成的。有多少根控制总线,就意味着 CPU 提供了对外部器件的多少种控制。所以,控制总线的宽度决定了 CPU 对外部部件的控制能力。

一次内存的读取过程

内存结构

内存 IC 是一个完整的结构,它内部也有电源、地址信号、数据信号、控制信号和用于寻址的 IC 引脚来进行数据的读写。下面是一个虚拟的 IC 引脚示意图

图中 VCC 和 GND 表示电源,A0 - A9 是地址信号的引脚,D0 - D7 表示的是控制信号、RD 和 WR 都是好控制信号,我用不同的颜色进行了区分,将电源连接到 VCC 和 GND 后,就可以对其他引脚传递 0 和 1 的信号,大多数情况下,+5V 表示1,0V 表示 0

我们都知道内存是用来存储数据,那么这个内存 IC 中能存储多少数据呢?D0 - D7 表示的是数据信号,也就是说,一次可以输入输出 8 bit = 1 byte 的数据。A0 - A9 是地址信号共十个,表示可以指定 00000 00000 - 11111 11111 共 2 的 10次方 = 1024个地址。每个地址都会存放 1 byte 的数据,因此我们可以得出内存 IC 的容量就是 1 KB。

如果我们使用的是 512 MB 的内存,这就相当于是 512000(512 * 1000) 个内存 IC。当然,一台计算机不太可能有这么多个内存 IC ,然而,通常情况下,一个内存 IC 会有更多的引脚,也就能存储更多数据。

内存读取过程

下面是一次内存的读取过程。

来详细描述一下这个过程,假设我们要向内存 IC 中写入 1byte 的数据的话,它的过程是这样的:

首先给 VCC 接通 +5V 的电源,给 GND 接通 0V 的电源,使用 A0 - A9 来指定数据的存储场所,然后再把数据的值输入给 D0 - D7 的数据信号,并把 WR(write)的值置为 1,执行完这些操作后,即可以向内存 IC 写入数据读出数据时,只需要通过 A0 - A9 的地址信号指定数据的存储场所,然后再将 RD 的值置为 1 即可。图中的 RD 和 WR 又被称为控制信号。其中当WR 和 RD 都为 0 时,无法进行写入和读取操作。

总结

此篇文章我们主要探讨了指令集、指令集的分类,与汇编有关的硬件,总线都有哪些,分别的作用都是什么,然后我们以一次内存读取过程来连接一下 CPU 和内存的交互过程。

原创不易,如有帮助还请各位读者四连(点在、在看、分享、留言),感谢各位大佬

关注公众号 程序员cxuan 回复 cxuan 领取优质资料。

我自己写了六本 PDF ,非常硬核,链接如下

我自己写了六本 PDF ,非常硬核,链接如下

我自己写了六本 PDF ,非常硬核,链接如下

相关问答

单片机 里DJNZ代表什么啊?

cjne的意思是CompareJumpNotEqual比较不相等转移指令。参与比较的两个数,若不相等,则转移,若相等则程序顺序执行;利用这条指令,就可以判断两数是否相等...

STC 单片机 能用 汇编 写程序吗?指令和C51有什么区别?

当然可以用和汇编语言写。其实STC就是51内核的单片机。指令系统当然和c51单片机兼容的。不过有的STC的外设比标准的C51丰富,比如有的STC有P4口,普通的C51就没...

单片机 汇编 语言编写一个。用十个按钮分别控制十个灯。比如:按下按钮K1 LED1灯亮。按下"?

检测是否有按键按下,相应的指示灯点亮,并熄灭其它的指示灯。至于10S锁住其他按钮,如果程序不做其它的事情,最简单的方法就是点亮指示灯后延时10S,再回到主函...

汇编 语言和 单片机 的区别?

软件和硬件。单片机是硬件,汇编是语言,是软件。单片机从诞生到现在,经过了将近70年的发展。众所周知,单片机是可以通过编写程序实现产品的功能,这么多年来...

XRL 单片机汇编 语句啥意思?

逻辑异或指令,即相对应的二进制位不同该位异或后的结果是1,相同则为0。XRLA,#data;累加器A中的内容和立即数执行逻辑异或操作。结果存放在累加器A中如A中的...

51 单片机汇编 语言的ifelse如何实现?

51单片机汇编语言的ifele语句实现如下:if语句由关键字“if”开始,后面跟随一个逻辑表达式。if语句根据该逻辑表达式的值来决定哪些语句会被执行。if语句可以...

单片机汇编 语言和c语言区别?

学了C语言和单片机,来挑战下这个问题。Keil5同时支持汇编语言.asm和C语言.c。以下以51单片机为例。对于汇编语言,你要掌握100多条指令,背下来更好[呲牙]要区分...

单片机 汇编 语言RLC是什么意思?

RLC是带进位的循环左移,RLCA即将A的内容左移一位,将进位位C中的值移到累加器A的最低位,A的最高位移到C里。譬如说:设A=01000001,C=1;则如果执行RL,则A=...

AT89C51 单片机 怎么用 汇编 语言让4个数码管同时显示1234?

4、使用方法:设有启动键K1和暂停/清零键K2。按k1启动计时,按k2则暂停计时,再按k2则清零。5、数码管动态显示接口是单片机中应用最为广泛的一种显示方式之一,...

51 单片机 汇编 语言中的swap什么意思?

51单片机汇编语言中的swap是半字节交换指令。SWAPA这条指令,将累加器A的高、低4位数据交换,也就是低4位数据进入高4位,高4位数据进入低4位。例如:MOVA#0...

猜你喜欢