设计与开发

算法单片机 单片机常用的14个C语言算法,需熟记于心!

小编 2024-10-06 设计与开发 23 0

单片机常用的14个C语言算法,需熟记于心!

算法(Algorithm):计算机解题的基本思想方法和步骤。

算法的描述:是对要解决一个问题或要完成一项任务所采取的方法和步骤的描述,包括需要什么数据(输入什么数据、输出什么结果)、采用什么结构、使用什么语句以及如何安排这些语句等。通常使用自然语言、结构化流程图、伪代码等来描述算法。

一、计数、求和、求阶乘等简单算法

此类问题都要使用循环,要注意根据问题确定循环变量的初值、终值或结束条件,更要注意用来表示计数、和、阶乘的变量的初值。

例:用随机函数产生100个[0,99]范围内的随机整数,统计个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数并打印出来。

本题使用数组来处理,用数组a[100]存放产生的确100个随机整数,数组x[10]来存放个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数。即个位是1的个数存放在x[1]中,个位是2的个数存放在x[2]中,……个位是0的个数存放在x[10]。

void main()

{

int a[101],x[11],i,p;

for(i=0;i<=11;i++)

x=0;

for(i=1;i<=100;i++)

{

a=rand() % 100;

printf("%4d",a);

if(i%10==0)printf("\n");

}

for(i=1;i<=100;i++)

{

p="a"%10;

if(p==0) p="10";

x

=x

+1;

}

for(i=1;i<=10;i++)

{

p="i";

if(i==10) p="0";

printf("%d,%d\n",p,x);

}

printf("\n");

}

二、求两个整数的最大公约数、最小公倍数

分析:求最大公约数的算法思想:(最小公倍数=两个整数之积/最大公约数)

(1) 对于已知两数m,n,使得m>n;

(2) m除以n得余数r;

(3) 若r=0,则n为求得的最大公约数,算法结束;否则执行(4);

(4) m←n,n←r,再重复执行(2)。

例如: 求 m="14" ,n=6 的最大公约数. m n r

14 6 2

6 2 0

void main()

{ int nm,r,n,m,t;

printf("please input two numbers:\n");

scanf("%d,%d",&m,&n);

nm=n*m;

if (m<n)

{ t="n"; n="m"; m="t"; }

r=m%n;

while (r!=0)

{ m="n"; n="r"; r="m"%n; }

printf("最大公约数:%d\n",n);

printf("最小公倍数:%d\n",nm/n);

}

三、判断素数

只能被1或本身整除的数称为素数 基本思想:把m作为被除数,将2—INT( )作为除数,如果都除不尽,m就是素数,否则就不是。(可用以下程序段实现)

void main()

{ int m,i,k;

printf("please input a number:\n");

scanf("%d",&m);

k=sqrt(m);

for(i=2;i<k;i++)

if(m%i==0) break;

if(i>=k)

printf("该数是素数");

else

printf("该数不是素数");

}

将其写成一函数,若为素数返回1,不是则返回0

int prime( m%)

{int i,k;

k=sqrt(m);

for(i=2;i<k;i++)

if(m%i==0) return 0;

return 1;

}

四、验证哥德巴赫猜想

(任意一个大于等于6的偶数都可以分解为两个素数之和)

基本思想:n为大于等于6的任一偶数,可分解为n1和n2两个数,分别检查n1和n2是否为素数,如都是,则为一组解。如n1不是素数,就不必再检查n2是否素数。先从n1=3开始,检验n1和n2(n2=N-n1)是否素数。然后使n1+2 再检验n1、n2是否素数,… 直到n1=n/2为止。

利用上面的prime函数,验证哥德巴赫猜想的程序代码如下:

#include "math.h"

int prime(int m)

{ int i,k;

k=sqrt(m);

for(i=2;i<k;i++)

if(m%i==0) break;

if(i>=k)

return 1;

else

return 0;

}

main()

{ int x,i;

printf("please input a even number(>=6):\n");

scanf("%d",&x);

if (x<6||x%2!=0)

printf("data error!\n");

else

for(i=2;i<=x/2;i++)

if (prime(i)&&prime(x-i))

{

printf("%d+%d\n",i,x-i);

printf("验证成功!");

break;

}

}

五、排序问题

1.选择法排序(升序)

基本思想:

1)对有n个数的序列(存放在数组a(n)中),从中选出最小的数,与第1个数交换位置;

2)除第1 个数外,其余n-1个数中选最小的数,与第2个数交换位置;

3)依次类推,选择了n-1次后,这个数列已按升序排列。

程序代码如下:

void main()

{ int i,j,imin,s,a[10];

printf("\n input 10 numbers:\n");

for(i=0;i<10;i++)

scanf("%d",&a);

for(i=0;i<9;i++)

{ imin="i";

for(j=i+1;j<10;j++)

if(a[imin]>a[j]) imin="j";

if(i!=imin)

{s=a; a=a[imin]; a[imin]=s; }

printf("%d\n",a);

}

}

2.冒泡法排序(升序)

基本思想:(将相邻两个数比较,小的调到前头)

1)有n个数(存放在数组a(n)中),第一趟将每相邻两个数比较,小的调到前头,经n-1次两两相邻比较后,最大的数已“沉底”,放在最后一个位置,小数上升“浮起”;

2)第二趟对余下的n-1个数(最大的数已“沉底”)按上法比较,经n-2次两两相邻比较后得次大的数;

3)依次类推,n个数共进行n-1趟比较,在第j趟中要进行n-j次两两比较。

程序段如下

void main()

{ int a[10];

int i,j,t;

printf("input 10 numbers\n");

for(i=0;i<10;i++)

scanf("%d",&a);

printf("\n");

for(j=0;j<=8;j++)

for(i=0;i<9-j;i++)

if(a>a[i+1])

{t=a;a=a[i+1];a[i+1]=t;}

printf("the sorted numbers:\n");

for(i=0;i<10;i++)

printf("%d\n",a);

}

3.合并法排序(将两个有序数组A、B合并成另一个有序的数组C,升序)

基本思想:

1)先在A、B数组中各取第一个元素进行比较,将小的元素放入C数组;

2)取小的元素所在数组的下一个元素与另一数组中上次比较后较大的元素比较,重复上述比较过程,直到某个数组被先排完;

3)将另一个数组剩余元素抄入C数组,合并排序完成。

程序段如下:

void main()

{ int a[10],b[10],c[20],i,ia,ib,ic;

printf("please input the first array:\n");

for(i=0;i<10;i++)

scanf("%d",&a);

for(i=0;i<10;i++)

scanf("%d",&b);

printf("\n");

ia=0;ib=0;ic=0;

while(ia<10&&ib<10)

{ if(a[ia]<b[ib])

{ c[ic]=a[ia];ia++;}

else

{ c[ic]=b[ib];ib++;}

ic++;

}

while(ia<=9)

{ c[ic]=a[ia];

ia++;ic++;

}

while(ib<=9)

{ c[ic]=b[ib];

b++;ic++;

}

for(i=0;i<20;i++)

printf("%d\n",c);

}

六、查找问题

顺序查找法(在一列数中查找某数x)

基本思想:一列数放在数组a[1]---a[n]中,待查找的数放在x 中,把x与a数组中的元素从头到尾一一进行比较查找。用变量p表示a数组元素下标,p初值为1,使x与a

比较,如果x不等于a

,则使p=p+1,不断重复这个过程;一旦x等于a

则退出循环;另外,如果p大于数组长度,循环也应该停止。(这个过程可由下语句实现)

void main()

{ int a[10],p,x,i;

printf("please input the array:\n");

for(i=0;i<10;i++)

scanf("%d",&a);

printf("please input the number you want find:\n");

scanf("%d",&x);

printf("\n");

p=0;

while(x!=a

&&p<10)

p++;

if(p>=10)

printf("the number is not found!\n");

else

printf("the number is found the no%d!\n",p);

}

思考:将上面程序改写一查找函数Find,若找到则返回下标值,找不到返回-1

②基本思想:一列数放在数组a[1]---a[n]中,待查找的关键值为key,把key与a数组中的元素从头到尾一一进行比较查找,若相同,查找成功,若找不到,则查找失败。(查找子过程如下。index:存放找到元素的下标。)

void main()

{ int a[10],index,x,i;

printf("please input the array:\n");

for(i=0;i<10;i++)

scanf("%d",&a);

printf("please input the number you want find:\n");

scanf("%d",&x);

printf("\n");

index=-1;

for(i=0;i<10;i++)

if(x==a)

{ index="i"; break;

}

if(index==-1)

printf("the number is not found!\n");

else

printf("the number is found the no%d!\n",index);

}

七、二分法

在一个数组中,知道一个数值,想确定他在数组中的位置下标,如数组:A[5] = {1,2,6,7,9};我知道其中的值为6,那么他的下标位置就是3。

int Dichotomy(int *ucData, int long, int num)

{

int iDataLow = 0 ;

int iDataHigh = num - 1;

int iDataMIDDLE;

while (iDataLow <= iDataHigh)

{

iDataMIDDLE = (iDataHigh + iDataLow)/2;

i f (ucData[iDataMIDDLE] > long)

{

iDataHigh = iDataMIDDLE - 1 ;

}

else if (ucData[iDataMIDDLE] < long)

{

iDataLow = iDataMIDDLE + 1 ;

} else{

return iDataMIDDLE ;

}

}

}

八、限幅滤波法

对于随机干扰 , 限幅滤波是一种有效的方法;

基本方法:比较相邻n 和 n - 1时刻的两个采样值y(n)和 y(n – 1),根据经验确定两次采样允许的最大偏差。如果两次采样值的差值超过最大偏差范围 ,认为发生可随机干扰 ,并认为后一次采样值y(n)为非法值 ,应予删除 ,删除y(n)后 ,可用y(n – 1) 代替y(n);若未超过所允许的最大偏差范围 ,则认为本次采样值有效。

下面是限幅滤波程序:( A 值可根据实际情况调整,value 为有效值 ,new_value 为当前采样值滤波程序返回有效的实际值 )

#define A 10

char value;

char filter()

{ char new_value;

new_value = get_ad();

if ( ( new_value - value > A ) || ( value - new_value > A )) return value;

return new_value;

}

九、中位值滤波法

中位值滤波法能有效克服偶然因素引起的波动或采样不稳定引起的误码等脉冲干扰;

对温度 液位等缓慢变化的被测参数用此法能收到良好的滤波效果 ,但是对于流量压力等快速变化的参数一般不宜采用中位值滤波法;

基本方法:对某一被测参数连续采样 n次(一般 n 取奇数) ,然后再把采样值按大小排列 ,取中间值为本次采样值。

下面是中位值滤波程序:

#define N 11

char filter()

{ char value_buf[N], count,i,j,temp;

for ( count=0;count<N;count++)

{ value_buf[count] = get_ad(); delay(); }

for (j=0;j<N-1;j++)

{ for (i=0;i<N-j;i++)

{ if ( value_buf>value_buf[i+1] )

{temp = value_buf; value_buf = value_buf[i+1]; value_buf[i+1] = temp; }

}

}

return value_buf[(N-1)/2];

}

十.算术平均滤波法

算术平均滤波法适用于对一般的具有随机干扰的信号进行滤波。这种信号的特点是信号本身在某一数值范围附近上下波动 ,如测量流量、 液位;

基本方法:按输入的N 个采样数据 ,寻找这样一个 Y ,使得 Y 与各个采样值之间的偏差的平方和最小。

编写算术平均滤波法程序时严格注意:

一.为了加快数据测量的速度 ,可采用先测量数据 存放在存储器中 ,测完 N 点后 ,再对 N 个数据进行平均值计算;

二.选取适当的数据格式 ,也就是说采用定点数还是采用浮点数。其程序如下所示:

#define N 12

char filter()

{int sum = 0,count;

for ( count=0;count<N;count++)

{ sum+=get_ad(); delay();}

return (char)(sum/N);

}

十一、递推平均滤波法

基本方法:采用队列作为测量数据存储器 , 设队列的长度为 N ,每进行一次测量 ,把测量结果放于队尾 ,而扔掉原来队首的一个数据 ,这样在队列中始终就有 N 个 “最新” 的数据。当计算平均值时 ,只要把队列中的 N 个数据进行算数平均 ,就可得到新的算数平均值。这样每进行一次测量 ,就可得到一个新的算术平均值。

#define N 12

char value_buf[N],i=0;

char filter()

{ char count; int sum=0;

value_buf[i++] = get_ad();

if ( i == N ) i = 0;

for ( count=0;count<N;count++)

sum = value_buf[count];

return (char)(sum/N);

}

十二、一阶滞后滤波法

优点:对周期性干扰具有良好的抑制作用,适用于波动频率较高的场合;

缺点:相位滞后,灵敏度低.滞后程度取决于a值大小.不能消除滤波频率高于采样频率的1/2的干扰信号。程序如下:

#define a 50

char value;

char filter()

{ char new_value;

new_value = get_ad();

return (100-a)*value + a*new_value;

}

十三、PID控制算法

在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器;

对于过程控制的典型对象──“一阶滞后+纯滞后”与“二阶滞后+纯滞后”的控制对象,PID控制器是一种最优控制;

PID调节规律是连续系统动态品质校正的一种有效方法,它的参数整定方式简便,结构改变灵活(PI、PD、…)。

一 模拟PID调节器

PID调节器各校正环节的作用:

比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节器立即产生控制作用以减小偏差;

积分环节:主要用于消除静差,提高系统的无差度。积分时间常数TI越大,积分作用越弱,反之则越强;

微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。

PID调节器是一种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进行控制。

程序片段如下:

#include <reg52.h>

#include <string.h>

typedef struct PID {

double SetPoint; // 设定目标Desired value

double Proportion; // 比例常数Proportional Const

double Integral; // 积分常数Integral Const

double Derivative; // 微分常数Derivative Const

double LastError; // Error[-1]

double PrevError; // Error[-2]

double SumError; // Sums of Errors

} PID;

主程序:

double sensor (void)

{

return 100.0; }

void actuator(double rDelta)

{}

void main(void)

{

PID sPID;

double rOut;

double rIn;

PIDInit ( &sPID );

sPID.Proportion = 0.5;

sPID.Derivative = 0.0;

sPID.SetPoint = 100.0;

for (;;) {

rIn = sensor ();

rOut = PIDCalc ( &sPID,rIn );

actuator ( rOut );

}

}

十四、开根号算法

单片机开平方的快速算法

因为工作的需要,要在单片机上实现开根号的操作。目前开平方的方法大部分是用牛顿迭代法。我在查了一些资料以后找到了一个比牛顿迭代法更加快速的方法。不敢独享,介绍给大家,希望会有些帮助。

1.原理

因为排版的原因,用pow(X,Y)表示X的Y次幂,用B[0],B[1],...,B[m-1]表示一个序列,其中[x]为下标。

假设:

B[x],b[x]都是二进制序列,取值0或1。

M = B[m-1]*pow(2,m-1) + B[m-2]*pow(2,m-2) + ... + B[1]*pow(2,1) + B[0]*pow(2,0)

N = b[n-1]*pow(2,n-1) + b[n-2]*pow(2,n-2) + ... + b[1]*pow(2,1) + n[0]*pow(2,0)

pow(N,2) = M

(1) N的最高位b[n-1]可以根据M的最高位B[m-1]直接求得。

设 m 已知,因为 pow(2, m-1) <= M <= pow(2, m),所以 pow(2, (m-1)/2) <= N <= pow(2, m/2)

如果 m 是奇数,设m=2*k+1,

那么 pow(2,k) <= N < pow(2, 1/2+k) < pow(2, k+1),

n-1=k, n=k+1=(m+1)/2

如果 m 是偶数,设m=2k,

那么 pow(2,k) > N >= pow(2, k-1/2) > pow(2, k-1),

n-1=k-1,n=k=m/2

所以b[n-1]完全由B[m-1]决定。

余数 M[1] = M - b[n-1]*pow(2, 2*n-2)

(2) N的次高位b[n-2]可以采用试探法来确定。

因为b[n-1]=1,假设b[n-2]=1,则 pow(b[n-1]*pow(2,n-1) + b[n-1]*pow(2,n-2), 2) = b[n-1]*pow(2,2*n-2) + (b[n-1]*pow(2,2*n-2) + b[n-2]*pow(2,2*n-4)),

然后比较余数M[1]是否大于等于 (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4)。这种比较只须根据B[m-1]、B[m-2]、...、B[2*n-4]便可做出判断,其余低位不做比较。

若 M[1] >= (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4), 则假设有效,b[n-2] = 1;

余数 M[2] = M[1] - pow(pow(2,n-1)*b[n-1] + pow(2,n-2)*b[n-2], 2) = M[1] - (pow(2,2)+1)*pow(2,2*n-4);

若 M[1] < (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4), 则假设无效,b[n-2] = 0;余数 M[2] = M[1]。

(3) 同理,可以从高位到低位逐位求出M的平方根N的各位。

使用这种算法计算32位数的平方根时最多只须比较16次,而且每次比较时不必把M的各位逐一比较,尤其是开始时比较的位数很少,所以消耗的时间远低于牛顿迭代法。

3. 实现代码

这里给出实现32位无符号整数开方得到16位无符号整数的C语言代码。

/****************************************/

/*Function: 开根号处理 */

/*入口参数:被开方数,长整型 */

/*出口参数:开方结果,整型 */

/****************************************/

unsigned int sqrt_16(unsigned long M)

{

unsigned int N, i;

unsigned long tmp, ttp; // 结果、循环计数

if (M == 0) // 被开方数,开方结果也为0

return 0;

N = 0;

tmp = (M >> 30); // 获取最高位:B[m-1]

M <<= 2;

if (tmp > 1) // 最高位为1

{

N ++; // 结果当前位为1,否则为默认的0

tmp -= N;

}

for (i=15; i>0; i--) // 求剩余的15位

{

N <<= 1; // 左移一位

tmp <<= 2;

tmp += (M >> 30); // 假设

ttp = N;

ttp = (ttp<<1)+1;

M <<= 2;

if (tmp >= ttp) // 假设成立

{

tmp -= ttp;

N ++;

}

}

return N;

}

单片机的组成以及分类和指标

(此处已添加圈子卡片,请到今日头条客户端查看)

单片机的组成

单片机又称单片微控制器,它把一个计算机系统集成到一块芯片上,主要包括微处理器(CPU)、存储器(随机访问存储器RAM、只读存储器ROM)和各种输入/输出接口(包括定时器/计数器、并行I/O接口、串行口、A/D转换器以及脉冲宽度调制(PWM)等,如图1-1所示。

▲图1-1 单片机组成框图

程序存储器(ROM)

ROM用来存放用户程序,分为EPROM、Mask ROM、OTP ROM和Flash ROM等。

EPROM型存储器编程(把程序代码通过一种算法写入程序存储器的操作)后,其内容可用紫外线擦除,用户可反复使用,故特别适用于开发阶段,但EPROM型单片机价格很高。

Mask ROM型单片机价格最低,适用于批量生产。由于Mask ROM型单片机的代码只能由生产厂商在制造芯片时写入,故用户更改程序代码十分不便,在产品未成熟时选用此型单片机风险较高。

OTP ROM型(一次可编程)单片机价格介于EPROM和MaskROM型单片机之间,它允许用户对其编程,但只能写入一次。

Flash ROM型单片机可采用电擦除的方法修改其内容,允许用户使用编程工具或在系统中快速修改程序代码,且可反复使用,故一推出就受到广大用户的欢迎。Flash ROM型单片机既可用于开发阶段,也可用于批量生产,随着制造工艺的改进,价格不断下降,使用越来越普遍,已成为现代单片机的发展趋势。

中央处理器(CPU)

CPU是单片机的核心单元,通常由算术逻辑运算部件(ALU)和控制部件构成。CPU就像人的大脑一样,决定了单片机的运算能力和处理速度。

随机存储器(RAM)

RAM用来存放程序运行时的工作变量和数据,由于RAM的制作工艺复杂,价格比ROM高得多,所以单片机的内部RAM非常宝贵,通常仅有几十到几百字节。RAM的内容具有易失性(也称为易挥发性),掉电后数据会丢失。最近出现了EEPROM 或Flash ROM 型的数据存储器,方便用户存放不经常改变的数据及其他重要信息。单片机通常还有特殊寄存器和通用寄存器,也属于RAM空间,但它们存取数据速度很快,特殊寄存器还用于充分发挥单片机各种资源的功效,但这部分存储器占用存储空间更小。

并行输入/输出(I/O)接口

通常为独立的双向I/O接口,既可以用作输入方式,又可以用作输出方式,通过软件编程设定。现代单片机的I/O接口也有不同的功能,有的内部具有上拉或下拉电阻,有的是漏极开路输出,有的能提供足够的电流可以直接驱动外部设备。I/O接口是单片机的重要资源,也是衡量单片机功能的重要指标之一。

串口输入/输出口

用于单片机和串行设备或其他单片机的通信。串行通信有同步和异步之分,这可以用硬件或通用串行收发器件实现。不同的单片机可能提供不同标准的串行通信接口,如 UART、SPI、I2C、MicroWire等。

定时器/针数器(T/C)

用于单片机内部精确定时或对外部事件(输入信号如脉冲等)进行计数,通常单片机内部有2个或2个以上的定时/计数器。

系统时钟

通常需要外接石英晶体或其他振荡源提供时钟信号输入,有的也使用内部RC振荡器。系统时钟相当于PC微机中的主频。

以上只是单片机的基本构成,现代的单片机又加入了许多新的功能部件,如模拟/数字转换器(A/D)、数字/模拟转换器(D/A)、温度传感器、液晶(LCD)驱动电路、电压监控、看门狗(WDT)电路、低压检测(LVD)电路等。此时的单片机才是真正单片化。内部的RAM和ROM的容量也越来越大,ROM 寻址空间甚至可达 64KB,可以说,单片机发展到了一个全新的阶段,应用领域也更为广泛,许多家用电器均走向利用单片机控制的智能化发展道路。

单片机的分类和指标

单片机从用途上可分成专用型单片机和通用型单片机两大类。专用型单片机是为某种专门用途而设计的,如DVD控制器和数码摄像机控制器芯片等。在用量不大的情况下,设计和制造这样的专用芯片成本很高,而且设计和制造的周期也很长。我们常用的都是通用型单片机,通用型单片机把所有资源(如 ROM、I/O 等)全部提供给用户使用。当今通用型单片机的生产厂家已不下几十家,种类有几百种之多。

下面对单片机的几个重要指标进行介绍。

(1)位数:是单片机能够一次处理的数据的宽度,有 1 位机(如 PD7502)、4 位机(如MSM64155A)、8位机(如MCS-51)、16位机(如MCS-96)、32位机(如IMST414)等。

(2)存储器:包括程序存储器和数据存储器,程序存储器空间较大,字节数一般从几KB到几十KB,另外还有不同的类型,如ROM、EPROM、E2PROM、Flash ROM和OTP ROM型。数据存储器的字节数则通常为几十字节到几百字节之间。程序存储器的编程方式也是用户考虑的一个重要因素,有的是串行编程,有的是并行编程,新一代的单片机有的还具有在系统编程(ISP, In-System-Programmable)或在应用再编程(IAP,In-Application re-Programmable)功能;有的还有专用的ISP编程接口JTAG口。

(3)I/O接口:即输入/输出接口,一般有几个到几十个,用户可以根据需要进行选择。

(4)速度:指的是 CPU 的处理速度,以每秒执行多少条指令来衡量,常用单位是 MIPS(百万条指令每秒),目前最快的单片机可达到100MIPS。单片机的速度通常是和系统时钟(相当于PC的主频)相联系的,但并不是频率高的处理速度就一定快,但对于同一种型号的单片机来说,采用频率高的时钟一般比频率低的速度要快。

(5)工作电压:通常工作电压是5V,范围是±5%或±10%;也有3V/3.3V电压的产品;更低的可在1.25V工作。现代单片机又出现了宽电压范围型,在2.5V~6.5V内都可正常工作。

(6)功耗:低功耗是现代单片机所追求的一个目标,目前低功耗单片机的静态电流可以低至μA或nA级。有的单片机还具有等待、关断、睡眠等多种工作模式,以此来降低功耗。

(7)温度:单片机根据工作温度可分为民用级(商业级)、工业级和军用级3种。民用级的温度范围是 0℃~70℃,工业级是-40℃~85℃,军用级是-55℃~125℃(不同厂家的划分标准可能不同)。

(8)附加功能:有的单片机有更多的功能,用户可根据需要选择适合自己的产品。比如有的单片机内部有A/D、D/A、串口、LCD驱动等,使用这种单片机可减少外部器件,提高系统的可靠性。

(此处已添加圈子卡片,请到今日头条客户端查看)

相关问答

单片机 中AL运算是什么?

单片机中的AL运算是指算术逻辑运算。算术逻辑运算是指单片机中对数据进行加、减、乘、除等算术运算以及逻辑运算(与、或、非等)的操作。单片机中的ALU(算术逻...

向高手请教一个 单片机算法 问题如何解决?

这个问题,我之前遇见过,代码一个个敲出来太麻烦了,还是先编辑好,截图发出来吧,有任何的以为,欢迎关注微信公众号ickeybbs问我这个问题,我之前遇见过,代码一个个...

51 单片机 采用的什么 算法 ?

51单片机PID的算法实现程序,用整型变量来实现PID算法,由于是用整型数来做的,所以也不是很精确,但是对于很多的使用场合,这个精度也够了,关于系数和采样电压全...

有没有详细的计算机原理或 单片机 的软件和硬结合的 算法 原理?

算法原理集成学习(ensembleleaning)通过构建并结合多个学习器来完成学习任务,通过将多个学习器结合,常常可以获得比单一学习器显著优越的效果和泛化能力。集...

单片机 中如何实现多线程,多任务?

如果不用OS,可以将不同任务放在定时器中断里,然后将任务分步骤执行(这大概就叫状态机吧).比如任务1放在主循环里,任务2放在定时器1中断里,任务3放在定时...

单片机 直线插补 算法 ?

直线插补(LinearInterpolation)是一种在两点之间生成一系列点的算法,这些点沿着两点之间的直线分布。这种算法在图形处理、计算机图形学、机器人路径规划、CN...

PLC与 单片机 的优缺点?

缺陷:PLC的体系结构是封闭的,各PLC厂家的硬件体系互不兼容,编程语言及指令系统也各异,当用户选择了一种PLC产品后,必须选择与其相应的控制规程,并且学习...P...

51 单片机 秒表程序

这个程序写的太乱了执行的顺序是先定义秒等一些寄存器,然后清零,并定义定时初值,开显示。再打开定时器中断,定时到,中断秒寄存器加1,加到10时清...

单片机 工程师需具备哪些技能,市场需求大吗?

首先单片机工程师的市场需求应该是非常大的!现在基本上所有的电子产品都都用到单片机。只要有电子的地方基本上都需要有电子工程师或者单片机工程师的参与。要...

Intel 单片机 特点?

Intel单片机具有以下特点:1.高性能:Intel单片机采用先进的微处理器技术,具有高性能和高速度,能够处理复杂的任务和算法。2.多功能:Intel单片机具有多种功...

猜你喜欢