产品选型

单片机测波 单片机实例分享,自制电感和电容测量仪

小编 2024-10-06 产品选型 23 0

单片机实例分享,自制电感和电容测量仪

电子爱好者进行制作时经常需要绕制电感,而一般的数字万用表通常又没有电感测量挡,所以无法测量绕好的电感的电感量。本文介绍一种用单片机制作的电感和电容测量仪(见图23.1),可以有效地解决这一问题。

测量原理

本测量仪采用谐振法测量电感和电容,其方法是用谐振回路的谐振特性来进行测量,其测量原理可用如图23.2所示的电路进行说明。

图23.1 电感和电容测量仪

测量电感Lx时,配用标准电容C1,用Lx和C1组成谐振回路,测量出回路的谐振频率f即可计算出Lx的电感量;测量电容Cx时,配用标准电感L1,用L1和Cx组成谐振回路,测量出回路的谐振频率f即可计算出Cx的电容量。

上述测量方法也有一个缺陷:当Lx或Cx很小时,谐振频率f会很大,测量比较困难,为此我们可以采用如图23.2所示的改进型电路,分别用L1和C1作“垫底”,降低了测量时的谐振频率。

假设由 L1和C1 组成的谐振回路谐振频率为f1,测量Lx时,Lx和L1串联,测得(L1+Lx)和C1组成的谐振回路谐振频率为f2,则根据下式可计算出Lx的电感量:

Lx=[(f1/f2)2-1]L1

测量Cx时,Cx和C1并联,测得L1和(C1+Cx)组成的谐振回路谐振频率为f2,则可根据下式可计算出Cx的电容量:

Cx=[(f1/f2)2-1]C1

硬件电路

测量仪电路如图23.2所示。电路由LC振荡电路、单片机电路、显示电路等部分组成。

CD4069是6非门CMOS集成电路,其中非门F1、F2和C2、R1、R2等组成两级放大电路。第一级放大电路中,R2是负反馈偏置电阻,将F1输出端的直流电位钳制在VCC/2,使F1工作在线性放大区域。第二级放大电路没有加反馈电阻,直接用第一级放大电路输出的直流电压作偏置电压,以提高放大器的增益。放大电路通过正反馈回路R3、C3与L1、C1谐振电路一起组成正弦波振荡电路,非门F3用于信号整形,把F2输出的正弦波转换成矩形波输入到单片机ATmega8的T1脚,由单片机进行脉冲计数,从而测出LC回路的谐振频率。通过单片机对数据进行计算处理后,由LCD1602液晶屏显示测量结果。

图23.2 测量仪电路原理图

S1为测量转换开关,当S1转向L时测量电感,转向C时测量电容。S2是归0按钮。

LCD1602采用4线制传递数据,只使用了数据端口D4~D7。

当开关S1在电容挡但没有测量电容Cx,或在电感挡并且用短路线代替Lx时,电路的振荡频率约为503kHz,我们把这个频率称为基准频率。测试电容或电感时,被测试元件的电容量或电感量越大,对应的振荡频率越低。当被测电容的电容量为10μF(或电感的电感量为1H)时,对应的振荡频率约为5.03kHz。

电阻R5的阻值控制LCD1602液晶屏的对比度,R5阻值越小,液晶屏对比度越大。LED和LED+是液晶屏背光发光二极管的供电端口。

程序设计

测量仪的电路比较简单,而功能的实现更重要地依赖于程序的设计。程序的设计和优化需要花费更多的精力。

程序由频率测量、测试数据的计算处理、LCD1602液晶屏驱动显示三大部分组成。频率测量部分用定时器T/C1作脉冲计数,定时器T/C2产生测量脉冲频率的闸门时间。这里闸门时间选择0.5s,定时器T/C1累计的脉冲数乘以2即得脉冲频率。闸门时间选择0.5s是为了提高LCD1602显示数据刷新速度,如果闸门时间选1s,则刷新速度偏慢。

测试数据的计算处理部分主要利用前面给的两个公式计算出测量结果,并经过数据预处理后,输出到显示电路显示读数。

LCD1602的数据传输采用4线制,8位数据分两次传送,先传高4位,后传低4位,因为传递的数据量不大,所以你感觉不到4线制速度传输和8线制有什么区别。

安装调试

制作所需元器件的清单见表23.1。

C1、L1要选用精度比较高的元件,有条件的可用万能电桥进行筛选。L1如买不到成品电感也可自制,磁芯用Φ8×10的工字磁芯,用Φ0.42的漆包线绕55.5圈。

安装前先将程序的目标文件写入单片机ATmega8L,熔丝位的设置如图23.3所示。

图23.3 熔丝位的设置

电路板的装配图如图23.4所示。LCD1602的接口排座焊接在电路板上,排针焊接在LCD1602模块上如图23.5所示。

表23.1 元器件清单

图23.4 电路板装配图

安装完成后,用一根USB线将电源接口连到电脑USB插座上,接通测量仪的电源,将S1置于电容挡,测量端不接电容,这时LCD1602第二行显示的是基准频率f1,如图23.6所示。基准频率如果超出503kHz±5kHz的范围,说明L1、C1中有元件误差较大,需进行相应的调整。如果L1是自绕的,出现误差的可能性相对较大,可适当增减其圈数,直至满足要求。

接通电源后,以电容挡为例,虽然我们在测试端并没有接任何电容,但LCD1602第一行显示的电容量读数并不为零,如图23.6所示,我们称其为初始值,这是由基准频率略有漂移造成的。这时如果测量小容量的电容,误差就比较大,当初始值后有“-”号时,测量值是实际值减去了初始值,即读数比实际容量小了。反之,测量值是实际值加上了初始值,即读数比实际容量大了。

对于上述问题,我在程序中也作了考虑,只要在不接测试电容的情况下按一下S2就可以归0了,其实质就是基准频率作了修正,并把修正结果存入EEPROM,掉电后不会丢失。归0后的显示数据如图23.7所示。

电容挡归0后,电感挡就不需要归0了,因为电容挡归0就相当于在电感挡测试端接了一个短路线,等同于电感挡归0(在S1置于电感挡,S2归0时其测试端必须接短路线),分析一下电路就明白了。

图23.5 排针的焊接

如果使用中发现测量误差较大,可通过程序进行修正,具体做法如下:找一个精度高的1000pF电容进行测量,假设读数为950pF,则计算1000/950≈1.05,我们将其称为修正系数,将计算公式Cx=[(f1/f2)2-1]C1改为Cx=[(f1/f2)2-1]C1×1.05,用这个公式计算就能减小测量误差了。为了简化程序中的计算,我采取把程序中的语句“unsigned int C1=1000”改为“unsigned int C1=1050”的方法,效果是一样的。

再找一个精度高的100μH电感进行测量,假设读数为94,则计算100/94≈1.06,把程序中的语句“unsigned char L1=100”改为“unsigned char L1=106”,同样也能减小测量误差。

把重新编译好的目标文件烧写到ATmega8L,再进行测量,精度就提高了。

用本测试仪测量电容的实例如图23.8所示(测量对象分别为240pF云母电容和0.47μF安规电容),测量电感的实例如图23.9所示(测量对象分别为10μH电感和电子节能灯的电感线圈)。

当测量值超过量程时,读数显示“OVE”,测电感时电感测试端不接电感(相当于电感量为无穷大),读数也显示“OVE”。

图23.6 基准频率的测量结果

图23.7 按S2归0后的显示数据

使用这个电感和电容测量仪时有一个问题需要注意,即电感或电容的参数会受测试频率的影响。例如,具有磁芯的电感,由于受磁芯的频率特性影响,不同的测试频率,其结果可能有所不同,用这个测量仪测的数据和用信号源频率为1000Hz的万能电桥测的数据可能会不一致。笔者认为,用更接近实际工作频率的测试频率可以得到比较符合实际的测试结果。由于本测试仪工作频率比较高,不适合测量电解电容器。笔者测量一个10μF的电解电容器,对应测试频率为6.5kHz,读数为6.26μF,误差很大。

图23.8 电容的测量结果

图23.9 电感的测量结果

单片机实例分享,无线供电的LED旋转显示万年历

大家一定见过各种各样的万年历吧?下面我就带领大家手工打造一台采用无线供电方式、以LED旋转显示屏作为显示器的万年历。图7.1所示就是这款LED旋转显示万年历的实际效果。所谓LED旋转显示屏,是指在电路中只有一列发光二极管,通过电动机带动发光二极管转动,当这列发光二极管转到不同位置时,用单片机控制相应的发光二极管点亮和熄灭,由于人眼的视觉暂留现象,形成了视觉上的图形或文字。

图7.1 基于LED旋转显示屏的万年历

由于显示屏是靠转动的发光二极管的残留影像显示信息的,其特点是显示信息丰富,而整个电路所需的发光二极管的数量却很少(本电路共使用16只发光二极管),所以电路原理图非常简单,几乎和流水灯电路无异,很适合手工制作。但由于整个电路板处于高速旋转状态,所以我们首先要解决两问题:一是如何给运动的系统供电;二是如何保证显示信息稳定显示。

如何给运动的系统供电

给运动的系统供电,常用的供电方式有3种:电池供电、电刷供电、无线感应供电。电池供电方式简单方便、易于携带,但它会使系统重量增加,影响转速,而且它成本高、寿命短,因此只适用于摇摇棒等短时间使用的装置,长时间运行的装置就不合适了。比如能显示时间的LED旋转显示屏,每次电池用完,重换电池就够烦心了,换了电池还得重新调整日期、时间,那简直可以用“痛苦”二字来形容。第二种方式——电刷供电,这种供电方式简单有效,能传送较大电流强度的电能,但在业余制作时,很难找到合适的高质量的电刷,高速旋转时会产生较大的噪声。第三种方式——无线感应供电,这种方式为无接触方式供电,寿命长、无新增噪声,虽然传送电流强度有限,效率稍低,但完全可以满足单片机系统的需要,所以本电路采用无线供电方式。无线供电方式技术要求稍高一些,但能增加制作的挑战性和趣味性,因此,本文首先对无线供电电路的设计与电能传输效率进行一些介绍。

无线供电技术目前还在研究试验阶段,但其应用场合非常广泛,前景非常好,比如,已经出现了一些小功率无线充电器应用成品,只要手机或者电子产品具备无线接收装置,靠近无线充电器就可以充电了,除此之外,还有无线射频IC卡、通行证、缴费卡等。

一个LED旋转显示屏需要消耗多大的电能呢?我们来做一个简单的计算:假设我们采用16个高亮度LED,工作时每个LED耗电10mA,单片机的自身耗电较少,暂且忽略不计,则电路所耗电流的最大值为160mA,电压取5V,所以最大总功耗约0.8W。下面我们就按这个要求设计电路。

无线感应供电的基本原理与变压器的原理相同。它利用电磁感应现象,通过交变磁场把电源输出的能量传送到负载,即在相距很近的两个线圈中,一个线圈作为电能的发送端,另一个线圈作为电能的接收端。通过振荡电路给发送端线圈提供交变电流,在相距很近的接收端线圈中就可以感应出交变电动势,再对这个交变电动势整流、滤波即可对负载供电。图7.2所示为通过无线感应供电方式驱动发光二极管发光的演示。

图7.2 以无线感应供电方式驱动发光二极管发光

图7.3所示是一个简易的近距离无线供电系统原理图。其中原线圈L1及其控制电路构成了发射端,副线圈L2及整流滤波电路构成了接收端,R5为负载电阻。

电路中使用74HC4060产生多谐振荡波,此多谐振荡波通过大功率场效应管IRF530给发送端线圈L1提供交变电流。本电路之所以使用74HC4060组成多谐振荡电路,主要是为了测试方便,74HC4060构成的振荡电路不但频率稳定,而且有10种输出频率可供选择,可以逐一测试每种频率所对应的输出功率和电能传输效率。当选用11.0592MHz的晶体振荡器时,QD端输出为经过16分频的频率——691.2kHz。

图7.3 简易无线供电系统原理图

次级接收电路中的谐振电容C4很重要,加上谐振电容后传输距离大大增加,输出功率和电能传输效率也明显提高。

按图3所示电路及元件参数搭好电路后接通电源,对电路进行测试。当不加任何负载时(L2远离L1),VT1的漏极电流I1为45mA;当L2与L1紧耦合时,I1增加到110mA,此时负载电阻R5上的电压U2为6.5V的电压,折合功率为0.83W,U1实测电压为13V,电能传输效率为:

电路的输出功率基本能满足LED旋转显示屏的要求,对于小功率设备,电能传输效率应该说是相当不错了。

在无线供电电路的制作中,振荡电路可以采用任何一种形式的多谐振荡器,如三极管振荡电路、集成运放电路或者门电路构成的振荡电路,也可以采用74HC4060这种带振荡器的二进制异步计数器来实现,振荡频率在500kHz左右为宜。另外,比较重要的就是线圈的制作了,发射线圈用Φ0.5左右的电磁线(漆包线)在外径为1cm的骨架上绕48匝,然后固定好;接收线圈用Φ0.2左右的电磁线绕成内径为4mm左右的12匝空心线圈即可,关键是安装时不要使这两个线圈相碰。

最后,根据我的制作体会,给对此有兴趣的爱好者几点建议:

(1)L1匝数较多是为了有足够的感抗(感抗和电感量及交流频率有关),避免流过的电流过大而发热。其实L1也可以只绕10匝左右,但一定要配上大小合适的谐振电容,使其工作在谐振状态,这样可以获得更好的传输距离、输出功率和电能传输效率,包括L2的谐振电容也是如此。谐振电容的选择可以在示波器监视下进行,谐振电容可以用涤纶电容、聚乙烯电容等,建议不要用瓷介电容。

(2)传输能量时,波形不是很重要,但是失真太大就会使功率管工作在线性区,而非工作在开关状态,这样将使电能的传输效率大幅度下降。如果在功率管的前面增加一级射极跟随器,可以提高波形的质量,从而提高电能的传输效率。

(3)无线供电电路的工作频率不可太高,频率越高对VMOS管的要求也就越高,目前高频特性满足这种要求的VMOS管还不容易找到;频率越低,就要求L1的电感量越大。所以我们通常选择电路的工作频率在200kHz~1MHz为宜。

(4)L2感应的电压经整流、滤波后一定要有稳压电路,以保证单片机工作稳定。

如何保证显示信息稳定显示

要保证LED旋转显示屏显示正常和稳定,就要求单片机控制显示屏总是从电路板转到某一位置时开始播放所要显示的内容。通常的做法就是通过传感器来检测电路板的位置,并通过中断的方式通知单片机进行显示。传感器可以使用霍尔元件或者光电传感器,其中光电传感器要求工艺简单,安装方便。

综上所述,本万年历的电路原理图如图7.4所示。

图7.4 LED旋转显示屏电路原理图

电路说明

本电路采用无线感应供电方式给旋转部分供电,所以电路包括无线供电部分电路和旋转部分电路两部分。

无线供电部分采用图7.3所示电路。

旋转部分是由电动机带动,进行高速旋转,其电路非常简单,首先由接收端线圈产生感应电动势,经二极管VD19整流、电容C4滤波、稳压二极管VD20稳压后得到5V电源给整个电路供电,单片机的16个I/O口线分别控制16个发光二极管。为了方便修改程序,我在电路中安装了ISP下载接口。电动机可以选用5V长轴直流电机。

作为万年历,应该具备显示公历、农历、星期、时间以及环境温度的功能,并且在掉电的情况下,所有信息不丢失,时钟正常走时,这里我们使用时钟芯片DS1302和数字温度传感器DS18B20。

同时在电路中还增加了一体化红外遥控接收头,它用于通过遥控调整时间和其他参数。

需要说明的是,在电路中并没有具体标明单片机的型号,你可以选用最熟悉的单片机,只要I/O口够用就可以了,当然,在I/O口够用的情况下,尽量选用体积小、重量轻的单片机为佳。

另外,在无线供电电路板和旋转电路板之间安装一对红外光电传感器,将电路板的位置状态送到单片机的外部中断请求输入端,用以对显示内容进行定位。

电路组装与调试

本系统电路不太复杂,两块电路都可以在万用电路板上插装、焊接(有条件的话也可制作PCB)而成。制作时首先按照原理图在万用电路板上规划出合理的元件布局,然后按布局图将元件依次插装并焊接,最后把需要连接的引脚用电磁线和镀锡裸铜线连接起来。注意不要短路,线路连接关系不要出错。图7.5所示是装配好的无线供电电路及底座实物图。

图7.5 装配好的无线供电电路及底座

安装时需要将直流电机和供电电路板固定在一个盒子里,使电机的转轴伸出盒外,将发射线圈套在电机转轴上,并以电机转轴为中心。图7.6所示是装配好的旋转主板正、反面的实物图,发光二极管和限流电阻均使用贴片元器件,这样会使得像素更紧凑,显示更清晰。

图7.6 装配好的旋转主板正反面

单片机使用STC12C5616AD,28脚窄体DIP封装。LED与单片机引脚的连接均用电磁线相连,这样走线整齐、美观,还能减小整个电路板的体积,其他引脚的连接使用镀锡裸铜线连接。接收线圈固定在旋转主板的底面,然后随旋转主板一起插到电机转轴上,使接收线圈套在发射线圈的内部,构成变压器的形式。全部安装好以后,需要插到电机轴上,测试一下电路板是否平衡,如果不平衡,可以通过在适当位置加焊锡进行配重。

电路装配好以后,需要对硬件电路进行调试,方法是通过ISP下载线接口对主板供电,依次测试每个发光二极管是否正常发光,或者通过下载器向单片机烧入流水灯等简单程序,观察电路整体运行情况。

Tips

DS1302是美国DALLAS公司推出的一款高性能、低功耗、带RAM的实时时钟电路,它可以对年、月、日、星期、时、分、秒进行计时,具有闰年补偿功能,工作电压为2.5~5.5V。采用三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号或RAM数据。DS1302内部有一个31×8的用于临时性存放数据的RAM寄存器,具有主电源/后备电源双电源引脚,同时提供了对后备电源进行涓细电流充电的能力。

DALLAS半导体公司的数字化温度传感器DS18B20采用TO-92封装,体积小巧、接线方便,是世界上第一片支持“一线总线”接口的温度传感器。测量温度范围为-55~+125℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性,适合于恶劣环境的现场温度测量,支持3~5.5V的电压范围,使系统设计更灵活、方便。DS18B20可以程序设定9~12位的分辨率,精度为±0.5℃。DS18B20的性能是新一代产品中最好的,性能价格比也非常出色,让我们可以构建适合自己的经济的测温系统。

程序设计

本万年历的单片机程序流程图如图7.7所示。

图7.7 程序流程图

由程序流程图可知,主程序主要是对外部中断的控制寄存器进行初始化设置。系统共用到两个外部中断源,外部中断0的中断请求信号来自红外光电传感器的红外接收二极管。每当电路板的红外接收二极管转到与之对应的红外发射二极管的位置时,就会向CPU发出中断请求信号,CPU响应中断,调用显示子函数,这样显示子函数总是在电路板转到同一个位置时被调用,保证显示的内容正常和稳定。外部中断1的中断请求信号来自一体化红外遥控接收头,当收到红外遥控信号时,就会转向中断服务程序,对红外遥控信号进行解码,并进行相应的按键操作。因为当接收到红外遥控信号时,对遥控编码中的“0”和“1”的识别完全是靠时间长短区分的,为保证红外信号解码及时和正确,外部中断1必须设置为高优先级。

显示程序在外部中断0的中断服务程序中。编写程序时需要注意的是,在对字符或汉字取模时要采用逐列式,正序和倒序都是可以的,在程序中都可以调整。显示程序其实就是依次取出字模表中的数据,按时间前后顺序均输出到同一列发光二极管上。比如要显示5个汉字,每个汉字16列,共扫描80列,可用如下程序。

unsigned int i;

for (i=0;i<80;i++)

{

P1=tab[2*i];

P2=tab[2*i+1];

delay(70);//延时时间的长短决定了字的宽度

}

P1=0xff;//扫描完所有列后要熄灭所有LED

P2=0xff;

如果想让显示的字符出现如图1所示的效果,上半部是正立的,下半部也是正立的,我们可以编写一个字节倒序的子函数,对取出的字模数据首先作倒序处理,然后,显示程序的i值是从80减小到的,参考程序如下。

unsigned int i;

for (i=80;i)0;i--)

{

P2=chg(tab[2*i]);//chg是对字模数据作倒序处理的子函数

P1=chg(tab[2*i+1]);

delay(70);//延时时间的长短决定了字的宽度

}

P1=0xff;//扫描完所有列后要熄灭所有LED

P2=0xff;

数字温度传感器DS18B20和时钟芯片DS1302的读写程序在这里不再详细列出,需要的读者可以到qq群657864614进行下载。但需要注意的是,温度传感器DS18B20的读写对时序要求非常严格,并且读写过程中一旦被打断,就会导致读写错误,所以DS18B20的读写程序也放在外部中断0的中断服务程序中,我们可以放在显示上半部分文字和显示下半部文字的程序之间,作为两段文字之间的空格。

所有硬件和软件完成之后,下面就可以坐下来慢慢欣赏自己的作品了。

■我的淘宝店铺:首页-数码达人小李-淘宝网,主打电脑周边产品,性价比高,发货快,服务好,品质过硬,总有一款适合你,感谢支持!

相关问答

51 单片机 产生锯齿波的原理?

预设一个变量,以一定的步进值累加,到达最大值后清零。每次累加的结果依次传输只DAC,输出就是个锯齿波了。幅度就是变量的最大值决定的。频率则被步进值和累加...

单片机 8051 D/A转换实验,利用DAC0832,编制程序产生三角波和梯形波, 单片机 编程?

用定时器来实现吧,三角波其实也可以用积分器实现。用定时器来实现吧,三角波其实也可以用积分器实现。

51 单片机 输出pwm波控制led灯?

使用51单片机可以通过输出PWM波来控制LED灯的亮度。PWM波是一种脉冲宽度调制信号,其占空比决定了电路输出信号的平均功率。具体实现方法如下:1.首先需要选...

如何利用51 单片机 输出PWM波?

提供思路:定义一个静态变量,程序每次进入定时器的中断函数中时判断是否满足你说要求的占空比,没达到就继续对变量值进行累加直到满足条件后使输出PWM波的那个...

单片机 STC12C5410AD控制DAC0832输出方波,三角波,正弦波...

由于题目没有给出DAC0832的接口,本人将采用以下接口:DAC0832的CS引脚接单片机的P1.0口DAC0832的CLK引脚接单片机的P1.1口DAC0832的DIN引脚接单片机...

增量式光电编码器的输出脉冲不进行信号处理可以直接接到 单片机测 转速吗?(我没用过,所以弱弱地请问下)?

51单片机的T0端口是有内部上拉电阻的,所以对于集电极开路输出的编码器可以不用外接上拉电阻了。我用示波器看过增量式光电编码器的输出波形,对于集电极开路输...

频率值用五位数码管显示,波形用一】作业帮

[回答]89s52thisarticletotherealizationofaprogramcombiningdac0832controlsinusoidalwaves,wavea...

正弦波,方波,三角波产生方案有几种?

正弦波产生方案:1、较低频率的正弦波可采用单片机产生正弦调制的PWM波,其后连接积分电路实现。2、采用运算放大器和RC阻容电路实现3、采用RLC谐...正弦波...

请大神解释一下锯齿波产生的这个程序?

咱一步一步说吧首先0FEFH这是一个地址,如果我分析的没错的话,这个地址连接的应该是DA转换器,将数字信号转换成模拟信号的。A是累加器,8未的单片机累加器应...

做室内停车车位检测方案时,如何选择Arduino、arm、树莓派、 单片机 ?

首先介绍一下超声波测距的原理和特点:控制器通过超声波探头向空间发出20KHz以上,一般是38KHz的声波信号。超声波信号碰到障碍行之后,由于波的特性,发生反射...

猜你喜欢