51单片机自动壁障小车设计,附原理图程序全套制作资料
大家好,欢迎关注电气技术微课堂!
在科学探索及紧急抢险中经常要对一些危险或人类不能直接到达的地域进行探测,这就需要用机器人来完成。而机器人在复杂地形行进时自动避障是一项必不可少也是最基本的功能。避障功能在日常生活中也是比较常见的,像是风靡一时的自动清扫机器人,只需放在地上一会就可以将你的屋子打扫干净,这里面的最基本功能也是避障,当它检测到前方有障碍就会绕开。这样就可以躲避家具将你的地板清理干净了。因此,自动避障系统的研发就应运而生。
MCS-51《单片机原理及接口技术》是中职院校电气自动化专业开设的 一门必修课程,该课程主要是通过对单片机的内部结构、相关外围电路及编程语言的学习,使学生掌握用单片机进行开发设计一些实用电子电路的能力,自动避障小车就是基于这一系统开发而成的。自动避障小车可以作为地域探索机器人和紧急抢险机器人的运动系统,让机器人在行进中自动避过障碍物。
一、本设计任务和主要内容本设计是对以单片机STC89C52RC为核心的系统根据感测模块传输的前方路面信息,控制小车行驶走向的软、硬件设计开发。系统要能够做到准确及时监测前方路面信息并传输给主控模块,做到根据前方路面信息及时调整小车的走向,做到显示小车的走向和小车已经行驶过的路程。
壁障小车的主要功能是:
① 感测模块实时监测路面情况并及时将障碍物的位置传输给单片机;
② 单片机核心模块根据感测模块给予的信息控制小车两电机转动;
③ 电机驱动模块驱动两电机转动,实现转向与行走。
二、系统主要硬件电路设计
根据设计要求,我们的自动避障小车主要由五个模块构成:车体框架、电源及稳压模块、主控模块、探测模块、电机驱动模块组成。 各模块分述如下:
图1 系统模块组成框图
2.1 小车避障原理分析
小车车头处装有三个红外探头,中间一个光电开关对向正前方,两侧的红外探头向两边各分开30度,(如图2所示)。小车在行进过程中由红外探头向前方发射出红外线,当红外线遇到障碍物时发生漫反射,反射光被光电开关接收。小车根据三个探头接受信号的情况来判断前方障碍物的分布并做出相应的动作。
图2 自动避障小车车体及避障原理图
红外探头选用的是E12-D15NK型红外避障传感器,这是一种集发射与接收于一体的光电传感器,发射光经过调制后发出,接收头对反射光进行解调输出。有效的避免了可见光的干扰。分别探测正前方,前右侧,前左侧障碍物信息,在特殊地形(如障碍物密集地形)可将正前方的光电开关移置后方进行探测。E12-D15NK光电开关平均有效探测距离0~30cm可调,且抗外界背景光干扰能力强,可在日光下正常工作(理论上应避免日光和强光源的直接照射)。我们小车换档调速后的最大制动距离不超过30cm,一般在10~20cm左右,因而探测距离满足我们的小车需求示意图如下:
图4 红外避障传感器原理图
电气特性:
红色:VCC;黑色:GND;黄色:信号输出;白色:和红线一起外接电位器。
工作电压:5VDC
工作电流:10-15mA
驱动电流:100mA
感应距离:1-15CM
机械特性:
颜色:橙黄色
直径:12MM
长度:35MM
引线长度:25CM(不含接头)
2.2电源模块
方案一: 采用交流电经直流稳压处理后供电 采用交流电提供直流稳压电源,电流驱动能力及电压稳定性最好,且负载对电源影响也最小。但由于需要电线对小车供电,极大影响了壁障小车行动的灵活性及地形的适应能力。而且壁障小车极易把拖在地上的电线识别为障碍物,人为增加了不必要的障碍。故我放弃了这一方案。
方案二: 采用蓄电池供电 蓄电池具有较强的电流驱动能力和较好的电压稳定性能,且成本低廉。可采用蓄电池经7812芯片稳压后给电机供电,再经过降压接7805芯片给单片机及其他逻辑单元供电。但蓄电池体积相对庞大,且重量过大,造成电机负载过大,不适合我们采用的小车车架(玩具电动车车架)。故我放弃了这一方案。
方案三: 采用干电池组进行供电 采用四节干电池降压至5V后给单片机及其他逻辑单元供电,另取六节干电池为电机及光电开关供电。这样电机启动及制动时的短暂电压干扰不会影响到逻辑单元和单片机的工作。干电池用电池盒封装,体积和重量较小,同时玩具车底座可以安装四节干电池,正好可为单片机及其他逻辑单元供电。在稳压方面,起始时考虑使用7805芯片对6V的电池电压进行降压稳压。但考虑到这样使得7805芯片消耗大量能量,降低电池寿命;同时,由于STC89C51、光电开关、小车电机对于供电电压要求并不苛刻,故我们将6V电池电压接一个二极管降压后直接给单片机及其他逻辑单元供电。而电机和光电开关的电源不做稳压处理。这样只需在小车主板上加两个调速按钮,根据电池电量选择合适功率即可,甚至于可直接在软件里设置自动换挡。 综合考虑,我采用方案三。
2.3主控模块 3.1、STC89C52RC单片机最小系统
我采用的是STC公司的51内核单片机STC89C52RC,单片机最小系统及概述如下:STC89C52RC单片机介绍
STC89C52RC单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可以任意选择。
主要特性如下:
1. 增强型8051单片机,6时钟/机器周期和12时钟/机器周期可以任意选择,指令代码完全兼容传统8051.
2. 工作电压:5.5V~3.3V(5V单片机)/3.8V~2.0V(3V单片机)
3. 工作频率范围:0~40MHz,相当于普通8051的0~80MHz,实际工作频率可达48MHz
4. 用户应用程序空间为8K字节
5. 片上集成512字节RAM
6. 通用I/O口(32个),复位后为:P1/P2/P3/P4是准双向口/弱上拉,P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为I/O口用时,需加上拉电阻。
7. ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无需专用仿真器,可通过串口(RxD/P3.0,TxD/P3.1)直接下载用户程序,数秒即可完成一片
8. 具有EEPROM功能
9. 具有看门狗功能
10. 共3个16位定时器/计数器。即定时器T0、T1、T2
11. 外部中断4路,下降沿中断或低电平触发电路,Power Down模式可由外部中断低电平触发中断方式唤醒
12. 通用异步串行口(UART),还可用定时器软件实现多个UART
13. 工作温度范围:-40~+85℃(工业级)/0~75℃(商业级)
14. PDIP封装
在探测模块和单片机中断接口之间、独立按键与单片机中断接口之间,需要经过电平的逻辑处理进行连接。主要涉及到一个三输入或非门和一个二输入与门。这两个逻辑关系我们直接选用74HC系列的集成芯片实现。 由于三输入或非门在市场上很难购买到,我们采用了两个二输入或非门和一个二输入与门完成了三输入或非门。由于我们采用的74HC08(四二输入与门)、74HC02(四二输入或非门)均为四二输入的,各提供四个二输入与门和四个二输入或非门,我们用各用一片芯片即可实现所需逻辑功能。
2.4电机驱动模块
本系统采用了L298N芯片来驱动电机 ,L298N是一个具有高电压大电流的全桥驱动芯片,输出电压最高可达50V,可以直接通过电源来调节输出电压;可以直接用单片机的IO口提供信号,而且带有使能端,方便PWM调速,电路简单,性能稳定,使用比较方便。L298N芯片可以驱动两个二相电机,也可以驱动一个四相电机,正好符合我们小车两个二相电机的驱动要求。 综合考虑,我采用L298N芯片驱动小车电机。
最终方案如下: 使用干电池组对系统供电,改造玩具电动车作为小车底座,采用STC89C52RC作为主控芯片,采用E12-D15NK光电开关进行障碍物探测,使用L298N驱动直流电机。逻辑关系处理使用74HC系列芯片完成。
2.5 总电路图
图5 总电路图设计
三、系统软件设计
3.1程序流程图
本系统设计流程图如下
图6 系统软件主流程图
3.2系统程序清单
#include <reg51.h>
#define uchar unsigned char
#define uintunsigned int
/********************
端口定义
*********************/
sbit IN1=P1^0; //P10与电机驱动IN1相连
sbit IN2=P1^1 //P11与电机驱动IN2相连
sbit IN3=P1^2; //P12与电机驱动IN3相连
sbit IN4=P1^3; //P13与电机驱动IN4相连
uchar INS=P2; //P2端口的^0、P2^1、P2^2分别与左、中、右红外模块输出信号线线相连
uint D=200;//定义延迟函数的参数
/************************
各个子函数定义
***********************/
void Go(void)
{
IN1=0;
IN2=0;
IN3=1;
IN4=0;
}
void Back(void)
{
IN1=0;
IN2=0;
IN3=0;
IN4=1;
}
void Go_left(void)
{
IN1=1;
IN2=0;
IN3=1;
IN4=0;
}
void Go_right(void)
{
IN1=0;
IN2=1;
IN3=1;
IN4=0;
}
void Stop(void)
{
IN1=IN2=IN3=IN4=0;
}
/***
void Back_left(void)
{
IN1=1;
IN2=0;
IN3=0;
IN4=1;
}
void Back_right(void)
{
IN1=0;
IN2=1;
IN3=0;
IN4=1;
}
***/
void Delay(uint n)
{
uint i,j;
i=j=n;
for(;i>0;i--)
for(;j>0;j--);
}
void Be_move(void)
{
uchar temp;
temp=INS&0x07;
switch(temp)
{
case 0x01:Go_right();Go();Delay(D);break;
case 0x02:
case 0x03:
case 0x07:Back();Delay(D);Go_right();Go();Delay(D);break;
case 0x06:Back();Delay(D);Go_left();Go();Delay(D);break;
case 0x04:Go_left();Go();Delay();break;
case 0x05:Go();Delay();break;
default:Stop();Delay();break;
}
}
void main()
{
uchar temp;
while(1)
{
temp=INS&0x07;
if(temp==0x00) Go();
else Be_move();
}
}
详解51单片机基本硬件结构
硬件结构
单片机的内部结构是由CPU、ROM、RAM等组成,现在介绍外部引脚。如图1-3所示为单片机的引脚图,这就是实验中要用的89C51单片机的外部引脚图。如表1-3所示为89C51单片机引脚分配表。
图1-3 89C51单片机的引脚图
表1-3 89C51单片机引脚分配表
端口结构分析
从1.3.1节的硬件结构中可以看出,89C51单片机总共有4组端口,P0、P1、P2和P3,了解这4组端口的结构原理对于日后的编程会有很大的帮助,由于这4组端口结构不尽相同,下面分别介绍单片机总的4组端口。由于每组端口都是由8位组成,故在下面的讲解中,只以每组端口的其中一位来解释。
1. P0口的结构及工作原理
P0口字节地址为80H,位地址80H~87H。P0端口8位中的一位结构图如图1-4所示。
图1-4 P0端口位结构图
由图1-4可见,P0端口由锁存器、输入缓冲器、多路开关、一个非门、一个与门及场效应管驱动电路构成。图1-4中标号为P0.X引脚的图标,表示引脚可以是P0.0~P0.7的任何一位,即在P0口有8个与图1-4所示相同的电路组成。下面先介绍组成P0口的每个单元部分。
(1)输入缓冲器
在P0口中,有两个三态的缓冲器,学过数字电路的读者都知道三态门有3个状态,即在其输出端可以是高电平、低电平,同时还有一种高阻状态(或称为禁止状态),图1-4中,上面一个是读锁存器的缓冲器,也就是说,要读取D锁存器输出端Q的数据,需要使读锁存器中这个缓冲器的三态控制端(图1-4中标号为“读锁存器”端)有效,下面一个是读引脚的缓冲器,要读取P0.X引脚上的数据,也要使标号为“读引脚”的三态缓冲器的控制端有效,引脚上的数据才会传输到单片机的内部数据总线上。
(2)D锁存器
构成一个锁存器,通常要用一个时序电路(时序的单元电路内容请参考数字电路相关知识),一个触发器可以保存一位二进制数(即具有保持功能),在51单片机的32根I/O口线中,都是用一个D触发器来构成锁存器的。图1-4中的D锁存器,D端是数据输入端,CP是控制端(即时序控制信号输入端),Q是输出端,
是反向输出端。
对于D锁存器来讲,当D输入端有一个输入信号,如果这时控制端CP没有信号(即时序脉冲没有到来),这时输入端D的数据是无法传输到输出端Q及反向输出端
的。如果时序控制端CP的时序脉冲到达,这时D端输入的数据就会传输到Q及
端。数据传送过来后,当CP时序控制端的时序信号消失时,输出端还会保持着上次输入端D的数据(即把上次的数据锁存起来)。如果下一个时序控制脉冲信号到来,这时D端的数据才再次传送到Q端,从而改变Q端的状态。
(3)多路开关
在51单片机中,当内部的存储器够用时(即不需要外扩展存储器时,这里讲的存储器包括数据存储器及程序存储器),P0口可以作为通用的输入/输出端口(即I/O)使用,对于8031(内部没有ROM)的单片机,或者编写的程序超过了单片机内部的存储器容量需要外扩存储器时,P0口就作为地址/数据总线使用。那么这个多路选择开关就是用于选择是作为普通I/O口使用还是作为地址/数据总线使用的选择开关了。从图1-4可知,当多路开关与下端接通时,P0口作为普通的I/O口使用;当多路开关是与上端接通时,P0口作为地址/数据总线使用。
(4)输出驱动
从图1-4中可看出,P0口的输出是由两个MOS管组成的推拉式结构,也就是说,这两个MOS管一次只能导通一个,当Vl导通时,V2截止,当V2导通时,Vl截止。
上面已对P0口的各单元部件进行了详细的讲解,下面研究一下P0口作为I/O口及地址/数据总线使用时的具体工作过程。
(1)作为I/O端口使用时的工作原理
P0口作为I/O端口使用时,多路开关的控制信号为0(低电平),如图1-4所示,多路开关的控制信号同时和与门的一个输入端相接,与门的逻辑特点是“全l出1,有0出0”,那么控制信号如果是0,这时与门输出的也是一个0(低电平),此时Vl管就截止,在多路控制开关的控制信号是0(低电平)时,多路开关是与锁存器的端相接的(即P0口作为I/O口线使用)。
P0口用作I/O口线,其由数据总线向引脚输出(即输出状态Output)的工作过程:写锁存器信号CP有效,数据总线的信号的输出流程为锁存器的输入端D→锁存器的反向输出
端→多路开关→V2管的栅极→V2管的漏极→输出端P0.X。前面已经介绍过,当多路开关的控制信号为低电平0时,与门输出为低电平,Vl管是截止的,所以作为输出口时,P0是漏极开路输出状态,类似于OC门,当驱动上接电流负载时,需要外接上拉电阻。如图1-5所示就是由内部数据总线向P0口输出数据的流程图。
图1-5 P0口内部数据总线向引脚输出时的流程图
P0口用作I/O口线,其由一引脚向内部数据总线输入(即输入状态Input)的工作过程,数据输入时(读P0口)有以下两种情况:
第一种情况是读引脚,即读芯片引脚上的数据。读引脚数时,读引脚缓冲器打开(即三态缓冲器的控制端要有效),通过内部数据总线输入。如图1-6所示为P0口读引脚时的流程图。
图1-6 P0口读引脚时的流程图
第二种情况是读锁存器,通过打开读锁存器三态缓冲器读取锁存器输出端Q的状态。如图1-7所示为P0口读锁存器时的流程图。
图1-7 P0口读锁存器时的流程图
在输入状态下,从锁存器和从引脚上读取的信号一般是一致的,但也有例外。例如,当从内部总线输出低电平后,锁存器Q=0,
=l,场效应管V2开通,端口线呈低电平状态,此时无论端口线上外接的信号是低电平还是高电平,从引脚读入单片机的信号都是低电平,因而不能正确地读入端口引脚上的信号。又如,当从内部总线输出高电平后,锁存器Q=1,
=0,场效应管V2截止,如果外接引脚信号为低电平,从引脚上读入的信号就与从锁存器读入的信号不同。为此,8031单片机在对端口P0~P3的输入操作有如下约定:凡属于读—改—写方式的指令,从锁存器读入信号,其他指令则从端口引脚线上读入信号。读—改—写指令的特点是,从端口输入(读)信号,在单片机内加以运算(修改)后,再输出(写)到该端口上。下面是几条读—改—写指令的示例。
ORL P0, A P0→AP0
INC P1 P1+1→P1
DEC P3 P3-1→P3
CPL P2 P2→P2
这样安排的原因在于读—改—写指令需要得到端口原输出的状态,修改后再输出,读锁存器而不是读引脚,可以避免因外部电路的原因使原端口的状态被读错。
注意: P0端口是8031单片机的总线口,分时出现数据D7~D0、低8位地址A7~A0以及三态,用来连接存储器、外部电路与外部设备。P0端口是使用最广泛的I/O端口。
(2)作为地址/数据复用口使用时的工作原理
在访问外部存储器时,P0口作为地址/数据复用口使用,这时多路开关控制信号为l,与门解锁,与门输出信号电平由地址/数据线信号决定;多路开关与反相器的输出端相连,地址信号经地址/数据线→反相器→V2场效应管栅极→V2漏极输出。例如,控制信号为l,地址信号为0时,与门输出低电平,Vl管截止;反相器输出高电平,V2管导通,输出引脚的地址信号为低电平。如图1-8所示为P0口作为地址线,控制信号为1,地址信号为0时的工作流程图。
图1-8 P0口作为地址线,控制信号为1,地址信号为0时的工作流程图
反之,控制信号为l、地址信号为l,与门输出为高电平,Vl管导通;反相器输出低电平,V2管截止,输出引脚的地址信号为高电平。如图1-9所示为P0口作为地址线,控制信号为1,地址信号为1时的工作流程图。
图1-9 P0口作为地址线,控制信号为1,地址信号为1时的工作流程图
可见,在输出地址/数据信息时,Vl、V2管是交替导通的,负载能力很强,可以直接与外设存储器相连,无须增加总线驱动器。P0口又作为数据总线使用,在访问外部程序存储器时,P0口输出低8位地址信息后,将变为数据总线,以便读指令码(输入)。在存取指令期间,控制信号为0,Vl管截止,多路开关也跟着转向锁存器反相输出端
;CPU自动将0FFH(11111111,即向D锁存器写入一个高电平1)写入P0口锁存器,使V2管截止,在读引脚信号控制下,通过读引脚三态门电路将指令码读到内部总线。如图1-10所示为P0口作为数据总线,取指期间工作流程图。
图1-10 P0口作为数据总线时取指期间工作流程图
如果该指令是输出数据,如“MOVX@DPTR,A”,该指令将累加器的内容通过P0口数据总线传送到外部RAM中,则多路开关控制信号为1,与门解锁,与输出地址信号的工作流程类似,数据由地址/数据线→反相器→V2场效应管栅极→V2漏极输出。
如果该指令是输入数据(读外部数据存储器或程序存储器),如“MOVX A,@DPTR”,该指令将外部RAM某一存储单元内容通过P0口数据总线输入到累加器A中,则输入的数据仍通过读引脚三态缓冲器到内部总线,其过程类似于读取指令码流程图。
通过以上分析可以看出,当P0作为地址/数据总线使用时,在读指令码或输入数据前,CPU自动向P0口锁存器写入0FFH,破坏了P0口原来的状态。因此,不能再作为通用的I/O端口。
注意: 系统设计中务必注意,程序中不能再含有以P0口作为操作数(包含源操作数和目的操作数)的指令。
当由P0口输入数据时,由于外部输入信号既加在缓冲输入端上,又加在驱动电路的漏极上。如果这时T2是导通的,则引脚上的电位始终被钳位在0电平上,输入数据不可能被正确地读入。因此,在输入数据时,应先把P0口置1,使两个输出FET均关断,使引脚“浮置”,成为高阻状态,这样才能正确地插入数据,这就是准双向口。
I/O口作为输入口时有两种工作方式,即读端口与读引脚,读端口时实际上并不从外部读入数据,而是把端口锁存器的内容读入到内部总线,经过某种运算或变换后再写回到端口锁存器,只有读端口时才真正地把外部的数据读入到内部总线,图1-10中的两个三角形表示的就是输入缓冲器,CPU将根据不同的指令分别发出读端口或读引脚信号以完成不同的操作,这是由硬件自动完成的。读引脚时,就是把端口作为外部输入线时,首先要通过外部指令把端口锁存器置1,然后再进行读引脚操作,否则就可能读入出错,为什么?看图1-10中,如果不对端口置1,端口锁存器原来的状态有可能为0,Q端为0,
端为1,加到场效应管栅极的信号为1,该场效应管就导通,对地呈现低阻抗,此时即使引脚上输入的信号为1,也会因端口的低阻抗而使信号变低,使得外加的1信号读入后不一定是1,若先执行置1操作,则可以使场效应管截止,引脚信号直接加到三态缓冲器中,实现正确的读入,由于在输入操作时还必须附加一个准备动作,所以这类I/O口被称为准双向口,89C51的P0、P1、P2、P3口作为输入时都是准双向口。接下来再看另一个问题,从图1-10中可以看出,这4个端口还有一个差别,除了P1口外,P0、P2、P3口都还有其他功能,这些功能又作什么用的呢?下面就来详细讲解这个问题。
每个I/O端口都有一个8位数据锁存器和两个8位数据缓冲器。P0~P3(8位锁存器)是SFR,有各自的端口地址,可直接用指令寻址,用于存放需要输出的数据。数据输入时只有缓冲没有锁存,各引脚上输入的数据必须一直保持到CPU将其读走为止,如图1-11所示为P0位结构图。
图1-11 P0位结构图
从图1-11中可以看出,P0口的内部有一个二选一的选择器,受内部信号的控制,如果在图1-11中的位置,则处在I/O口工作方式,此时相当于一个准双向口输入,须先将P0口置1,每根口线可以独立定义为输入或输出,但是必须在口线上加上拉电阻,如果将开关拨向另一个方向,则作为地址/数据复用总线用,此时不能逐位定义为输入/输出,有两种用法,当作数据总线用时输入8位数据,当作地址总线用时则输出低8位地址,注意,当P0口作为地址/数据复用总线用之后就不能再作I/O口使用了。那么什么叫做地址/数据复用?这其实是当单片机的并行口不够用时需要扩展输入/输出口时的一种用法,具体使用方法会在后续的章节中逐步讲解。
利用P0口进行扩展外部存储器和I/O时,P0口将作为地址和数据分时复用,CPU发控制信号,打开与门,使MUX打向上边,形成推拉式结构,数据信号可直接读入或输出到内部总线。利用P0作为通用I/O时,此时P0口是一个准双向口,CPU发控制信号,封锁与门,使上拉管截止,MUX打向下边,与D触发器Q连接。
输入程序举例:
MOV P0, #FFH
输出程序举例:
MOV A, P0
2. P1口的结构及工作原理
P1口字节地址为90H,位地址为90H~97H,如图1-12所示为P1位结构图。
图1-12 P1位结构图
与P0不同,P1口只能作为I/O口使用,无MUX,但其内部有一个上拉电阻,所以连接外围负载时不需要外接上拉电阻,这一点P1、P2、P3都一样。
输入程序举例:
MOV P1, #FFH
MOV A, P1
输出程序举例:
MOV A, P1
3. P2口的结构及工作原理
P2口字节地址为A0H,位地址为A0H~A7H,如图1-13所示为P2位结构图。
图1-13 P2位结构图
P2口作为I/O口线时用法与P0口一样,当内部开关拨向另一个方向,即作地址输出时,可以输出程序存储器或外部数据存储器的高8位地址,并与P0口输出的低地址一起构成16位的地址线。
注意: 和数据总线的区别,数据总线是8位的,很多书上都会提到51单片机是8位数据总线,16位地址总线,但都不会解释有什么不同,看到这里读者应该明白二者的区别。
16位的地址总线可以寻址64KB的程序存储器或外部数据存储器,后续章节会讲解,此处要注意的是当P2口作为地址总线时,高8位地址线是8位一起输出的,不能像I/O口线那样逐位定义,这与P0口是一样的。
当P2口用来扩展外存储器和I/O时,作为高8位地址输出,当进行外部存储器或I/O设备读写操作时,CPU自动发出控制信号,打开与门,使MUX拨向上边。当P2口当作通用I/O时,CPU自动发出控制信号,MUX拨向下边,与D触发器Q连接。
输入程序举例:
MOV P2, #FFH
MOV A, P2
输出程序举例:
MOV A, P2
4. P3口的结构及工作原理
P3口字节地址为B0H,位地址为B0H~B7H。如图1-14所示为P3位结构图。
图1-14 P3位结构图
P3口作为I/O口线用时同其他的端口相同,也是准双向口,不同的是,P3口的每一位都有另一种功能,也叫第二功能,具体作用在用到时将详细解释。当P3口作为通用I/O口时,准双向口第二功能端保持高电平。
输入程序举例:
MOV P3, #FFH
MOV A, P3
输出程序举例:
MOV A, P3
当P3口作为第二功能时,锁存器输出Q=1,如表1-4所示为P3口第二功能列表。
表1-4 P3口第二功能列表
既然单片机的引脚有第二功能,那么CPU是如何识别的呢?这是一个令许多初学者困惑的问题,其实单片机的第二功能是不需要人工干预的,也就是说只要CPU执行到相应的指令,就自动转成了第二功能。
思考: 输入和输出口简称I/O口,是单片机与外部电路接口的唯一途径,4个并行口的结构是有一定区别的,如何根据系统的设计要求和产品用途来正确灵活地使用是初学者必须掌握的基本功,还需要清楚其功能和用途。
5. 应用注意事项
(1)在无片外扩展存储器的系统中,这4个端口的每一位都可以作为准双向通用I/O端口使用。在具有片外扩展存储器的系统中,P2口作为高8位地址线,P0口作为双向总线,分时作为低8位地址和数据的输入/输出线。
(2)P0口作为通用双向I/O口使用时,必须外接上拉电阻。
(3)P3口除了作通用I/O口使用外,各位还具有第二功能。当P3口某一位用于第二功能作输出时,则不能再作通用I/O口使用。
(4)当P0~P4端口用作输入时,为了避免误读,都必须先向对应的输出锁存器写入1,使FET截止,然后再读端口引脚,例如以下程序:
MOV P1, #0FFH
MOV A, P1
相关问答
S51 单片机 复位电路的 原理 -ZOL问答一般C51单片机的复位方式常用的方法是在给芯片上电的同时给复位端(RESET端)一个正脉冲,所以,在单片机最小系统中要求RESET端要有一个电容(常用10微法电解)接正电...
C51单片机 RS是什么意思?C51单片机RS是指使用C语言编写的单片机软件开发环境,包括RS-51编译器、P51系列单片机下载器、串口调试工具等。C51单片机RS的主要功能是支持C语言对51系列单片...
c51单片机 汇编语言,八个小灯,依次亮灯,间隔0.5s,最后一个点亮后,全部灭掉,请教大神怎么编程?;如果你的灯在p1端口的话,你试试我的程序ORG0000HSTART:MOVP1,#7EHACALLDELAYMOVP1,#0BDHACALLDELAYMOVP1,#0DBH...
人准备学习 单片机 开发,正在考虑入手一个 单片机 开发板。 C51 ...[回答]都一样。只是为了理解原理。一般是从51开始。我们是在无锡旺扬设计的,老客户了,一直合作,强烈推荐,望采纳还不错的,他们专业承接单片机解决方案,以...
请教各位大虾! c51单片机 中while(1)的用法?while(1){}的话,就是不断执行大括号里的程序;while(1);的话就是程序到此停止,后面的不再执行了,除了中断,再也不动了,就一个分号的区别,分号干掉就...while(...
单片机c51 和c52的区别?C51和C52都是基于8051架构的单片机系列,其中C52是C51的升级版,它们的主要区别如下:1.架构不同:C51和C52的架构基本相同,但C52具有更先进的架构和功能,支持...
什么是8051 单片机 的三总线结构?单片机控制系统的三总线是指数据总线、地址总线、控制总线。1、数据总线51单片机的数据总线为P0口,CPU从P0口送出和读回数据。2、地址总线51系列单片...
51 单片机 内部包含哪些主要功能部件?各功能部件的主要作用是什么?1、cpu主芯片(内部通过总线连接扩展的设备)2、时钟电路(为单片机提供震荡脉冲)3、电源电路(为单片机提供电源)4、内部数据存储器RAM(包括通用数据寄存...1...
51 单片机 串口通信,下面的何时发生中断?为什么要加一个flag=...这里我给你解释一下flag=1;的作用,比如串口调试助手,发送数据单片机自动开启接收中断,接收RI=1;当单片机接收数据完成后,必须软件进行清零RI=0,说明...
C51单片机 按键控制定时闹钟 - 懂得纯粹用51做闹钟,需要有时钟芯片或者内部RTC功能,如果都没有,只通过定时器,你需要不断的给定时器做一些补偿,你要的是代码还是思路?请问还有代码吗