设计与开发

浮点运算 单片机 单片机里面的CPU使用率到底该怎么计算?

小编 2024-10-12 设计与开发 23 0

单片机里面的CPU使用率到底该怎么计算?

上周提到为什么我们需要关注CPU利用率的问题,总结一句话就是,利用率越低,你的系统效率越高、响应越快,实时性越高。但是并没有具体说该如何计算CPU利用率。

今天,借助国产操作系统RT-Thread,我们开始实操一番。

在实操之前,需要简单了解几个概念。

钩子函数,即以hook命名的那些函数。那么什么是钩子函数呢?说白了,就是一个函数指针 ,只是这个函数比较特殊一点。

特殊在哪?操作系统某些指定位置才会设置钩子函数,比如程序运行到空闲任务了,为了不修改系统源码(没事别修改源码,很危险的事情,除非你是真大佬),系统会提供一个设置钩子函数的函数接口给你,当你需要在空闲任务中执行某些功能时,用这个函数设置你的需要功能函数就可以了,等系统运行到空闲任务,他就会帮你调用这个函数了。

这个功能看着是不是有点眼熟,对的,和所谓的回调函数是一个道理(我也不明白为啥叫钩子函数,可能是因为和系统有关,和通用的回调函数又有点区别,所以就称之为钩子函数吧,不过你不要管名称,只要知道意思就行了)。

除了在空闲任务可以设置钩子函数,还有可能在任务切换、系统启动、任务创建等等关键的地方设置,当然了,这里的每一个钩子函数都是一个单独的函数指针。

前面也说了,设置钩子函数的目的只有一个,那就是可以让你在不修改系统源码的情况下达到私人目的,让系统的扩展性更强,比如今天说的内容(还有下次介绍的线程CPU使用率问题),如果系统没有空闲钩子函数的存在,你只能去修改系统源码才能达到目的啦。

还有文章所说的线程(task)、任务(thread),其实在RTOS中都是一样的。在 uCOS、FreeRTOS 中,叫任务,RT-Thread 叫线程,只是叫的名称不一样,内容都是差不多的。

然后再大概说说怎么计算的问题。也就是在空闲钩子函数里面,我们需要干什么事情才能到达CPU计算的目的。

首先,第一步肯定是设置钩子函数,其次就是钩子函数该怎么写的问题。

这个网上一搜就出现了(鱼鹰也是网上搜的代码),然后就要分析为什么这么写。

前面说过,CPU利用率其实是首先计算一段时间内空闲任务执行时间,然后反推其他任务的执行时间。

这里有两个问题,一段时间是多少?空闲任务的执行时间怎么计算?

先说第二个问题。用定时器时间掐?好像不好,因为你不知道什么时候程序就离开了空闲任务跑去执行其他任务了,而即使你可以知道它什么时候离开空闲任务的,那也会增加计算难度,不是好的方式。

那怎么办?还记得刚学单片机时你是怎么进行软件延时的吗?对,就是用这个方法,软件延时!

只要程序执行到空闲任务了,就用一个变量不停自加。这样就可以根据变量值来大概计算空闲任务的执行时间。

但是这里又存在一个问题:如果这个变量一直自加,肯定会溢出,该怎么解决。

加大变量的大小,比如原先使用一个字节、两个字节的,那么如果溢出,就用四个字节、八个字节。

但32位系统最大能支持的也就8个字节了,如果还是溢出了咋办?再套一个循环,一个循环的数加完了,再加另一数就行了。

但是还有一个问题,如果说自加的时间不做限制,那么再多的变量也不行,而且还会影响CPU计算的实时性,也就不能实时反映CPU利用率了;而如果时间太短,如果刚好有任务的执行时间在这个范围,那么很可能你计算CPU利用率就直接是100%了。

比如说你一个任务需要执行10毫秒,然后你计算CPU的周期也是10毫秒,那么可能刚好开始计算时跳到了那个任务执行,那么你的变量就没有自加了,也就会显示100%利用率了。

这里其实说的是前面的第一个问题,一段时间是多少?

对于这个时间,因为鱼鹰看的书籍比较少,所以也没有理论支撑(如果有道友知道的,不如留言)。

但是肯定既要考虑变量溢出(这个可以通过加循环方式解决),又要考虑实时性,还要考虑其他任务的最大执行时间 ,否则本来系统没有问题的,但是因为你追求实时性,导致CPU利用率80%、90%的,那就很尴尬了。

以上讨论如果没有经验可能比较难理解,所以建议大家在看完后面内容,实操过后,再回头重新看一遍,这样才有更深的理解。

现在再看CPU计算公式:

cpu_usage = (total_count – count)/ total_count × 100 %

cpu_usage: CPU利用率;

total_count:单位时间内全速运行下的变量值;

count:单位时间内空闲任务自加的变量值。

total_count这个值表现了单片机全速运行下,所能达到的最大值。所谓全速运行,即不响应中断,也不去执行其他任务 ,就单纯让它在一个地方持续运行一段时间,这个值可以体现CPU的算力有多大。

比如,51单片机,可能这个值自加10毫秒之后只有100,STM32F1单片机自加能到1000,而STM32F4单片机能到2000,这样就能体现他们之间的算力差别了。

这个值可以是动态的,也可以是静态的。静态有静态的好处,动态有动态的好处。

所谓的静态是指,在系统没有运行任务时,关闭所有的中断,自加这个值。这样,这个值比较准确,但是如果一开始这个值计算错了,那么后面的计算肯定也是有问题的,而且如果系统启动后长时间既不启动任务,也不响应中断,肯定对系统有一定的影响。但是好处是,系统消耗更少,因为他只计算一次。

而动态计算,则是在空闲任务中,当这个值为零时,计算一次,之后只会在空闲任务自加的变量值超过这个数时,才会更新这个值,这样一来,最终还是能准确反映CPU利用率的。好处是,不需要在开机时关闭所有中断,当然坏处是,前期可能不是很准,因为可能由于中断原因导致计算的值较小(中断处理时消耗了算力)。

废话太多了一些,直接开始干吧。新建一个文件,拷贝如下代码:

以上的代码网上找的,首先分析这两个宏,第二个宏就是前面所说的防止变量溢出用的,而第一个值就是CPU计算周期,这个值比较关键,后面再说。

首先在系统启动前设置钩子函数:

然后,就没有然后了。

对的,设置完之后就可以了,但为了让我们能观察到,可以打印出来。

我们可以观察效果如何,开始设置计算周期和任务延时函数一样,10毫秒。

测试结果:

可以看到,因为是动态计算的,所以开始为0,因为系统首先运行其他任务,只有其它任务不运行时,才会开始运行空闲任务,所以CPU利用率为0。

但是即使后面有值了,你也会发现CPU利用率变化很大,0.82%~1.5%。而且你会发现除了开始的0.0%,后面又再次出现了,这又是怎么回事?

通过设置断点分析,发现,这是因为计算值超出了开始的值,重新设置了:

这就是动态计算的一些问题了,它在一开始的一段时间里,因为无法完全表现算力,只能通过后面不停的修正该值才能达到稳定。

现在修改计算周期 20 毫秒:

发现它的表现更差劲,4.3%~11.61%,而且会周期性出现低利用率的情况。

再改,100毫秒:

可以看到这个比较稳定了,13.71%~14.35%。

那么这个测试代码实际情况的CPU利用率是多少呢?

我们可以通过前面的笔记《》大概计算线程执行时间:

1.59毫秒,10毫秒执行周期,如果只有这个任务执行,大概1.59/10=15.9%(准确计算应该是 1.59/(10 + 1.59) =13.7%)。

和前面的100毫秒类似。

我们先不管前面的结果,先理解一下里面的计算方法。

首先,如果total_count开始为0,那么开始第一次计算。这次计算会关闭调度器。

计算过后,就不再进入。

之后就是动态计算过程:

和第一次计算一样,都是在一定时间内自加计数器,不同的是,这次不会关闭调度器,也就是说,如果有高优先级任务就绪,那么是可以执行其他任务的。

并且计时时间使用的是系统函数rt_tick_get(),单位为系统调度时间。测试环境中,系统调度时间为 1 毫秒。

有意思的是,在进行最终的计算时,采用了分步计算,首先计算整数,再计算小数。

为什么要这样做?效率!

这样的计算方法,可以将浮点运算转化成整型运算,这在没有浮点运算单元的单片机中,能大大减少计算时间。

另外,为了防止溢出,还使用了一个循环结构。

理解了以上内容,现在开始进行鱼鹰式深度思考:

1、 上面的分步计算是否存在问题?

2、 关调度器只关闭了任务调度,但还是会响应中断,这能够体现单片机最大算力吗?

3、 使用rt_tick_get() 函数进行计时,精度是多少,会影响最终的计时吗?

4、 有必要使用循环体吗?如果单位时间内不溢出,是否不用循环体会更好?

5、 前面的CPU使用率为什么会跳动,按理说任务的执行时间应该是确定的,也只有一个任务在运行,不应该跳动才对?

6、 10毫秒的计算和100毫秒的计算差别在哪?

7、 终极问题,如何精确计算CPU使用率?

上面的问题,如果只是粗略计算,其实都可以不用考虑,本着对技术的热爱,还是聊一聊好了。

1) 分步计算,不知道你想到了什么BUG?这个问题其实在以往的笔记都提过,这次再说一次。

当你在获取CPU使用率时,如果刚好在更新这两个值,那么可能整数部分是上一次计算的值,而小数部分却是这次计算的值,那么肯定有问题。

这就涉及到数据完整性获取的问题。怎么解决。关调度器、关中断都可以。

但是因为是粗略计算,那么小数部分即使是错误的,也没事。

2) 因为只关调度器,所以对于中断还是会响应,比如说你设定计算周期为100毫秒,那么1毫秒一次的systick中断肯定会执行,那么在100毫秒中,有100次进入中断执行,而这些算力在上述算法中是无法体现的。

3) rt_tick_get() 函数精度问题,因为这个是系统的软件计时器,所以在测试环境中为1毫秒递增一次,也就是说它的精度在1毫秒。因此,在100毫秒的计算周期里面,有1% 的误差存在,在10毫秒的计算周期里面,误差10%!

4) 有没有必要用循环体?在1秒计算一次的情况下,即使不用循环体,也不会导致溢出问题。而且使用了循环体,还会导致精度降低,毕竟样本少了。比如使用循环体最大值为100,不使用时为10000,哪个精度高?

5) CPU使用率跳动问题。因为是测试,所以只有一个任务在运行,而且任务很简单。

这个任务的执行时间应该是固定的才对,但即使是使用了后面的高精度计算方式,CPU使用率还是会跳动,这是为什么?

第一,rt_kprintf函数执行时间是不固定的,不固定在哪,比如要显示的变量开始是1,后面是1000,因此它输出的字符串不一样,并且打印时间也不一样,因为是查询方式打印,所以差别很大!这就是我为什么推荐DMA打印的原因,未使用前是10%,使用后可能就是1%,甚至更低。

第二点,也是非常容易忽视的一点,插入的中断执行时间。

系统每隔1毫秒需要进入systick执行一次(或者其他中断执行时间),如果说任务的执行时间超过1毫秒,那么中间必然会先执行中断,再执行任务,这样一来,因为中断的插入,导致时间不再那么准确了。而当你把打印的时间控制在 1 毫秒以内,那么CPU使用率会变的非常稳定。

第三:延时rt_thread_delay()函数本身的误差,受到系统精度的影响,这个延时时间其实也不是固定的,会有一定的浮动。

6) 10毫秒和100毫秒计算的差别?

如果说你的任务执行时间 小于1毫秒,那么在10毫秒和100毫秒的计算差别不是很大,但是如果说计算周期变成了5毫秒,即使任务执行时间小于1毫秒的情况下,计算值也是会在最大最小 之间来回跳动的。而执行时间一旦超过1毫秒,那么10毫秒和100毫秒的计算就有较大的差别。

并且测试的时候,因为系统延时时间是10毫秒,而计算的时候也是10毫秒的周期,所以出现了比较诡异的事情,因为按理说延时10毫秒,任务执行时间2.56毫秒,任务运行周期为12 毫秒(还记得前面所说的延时误差吗),CPU 使用率按理应该是 21.3 左右,实际上却是 6.5% 左右,相差太大了,这就非常奇怪了。而且如果更改执行时间为1.5毫秒时(通过修改代码修改执行时间),发现计算值又正常了;而即使不修改执行时间,修改计算时间为100毫秒,又正常了,这是怎么回事?

通过深入分析发现,刚好在主任务延时10毫秒的时候,切换到了空闲任务进行空闲时间计算,执行了9.4毫秒的时候,又切回到了主任务,所以计算时,得到了6.5%的计算值。

粗略表示如下所示:

通过这个分析,你应该知道,计算CPU的时候,尽量不要使用和任务延时时间一样的计算周期,否则会出现莫名其妙的事情;还有一点就是,任务的执行周期 = 任务执行时间 + 系统延时,而前面所介绍的计算方法只是粗略的表示,严格来说是有问题的。

7) 终极问题,如何提高计算精度?

通过以上分析,我们其实已经知道了计算时的一些问题点。首先,计算周期问题,这个可以根据系统来确定,但是千万要注意前面的提到的问题。如果说500毫秒计算周期可以满足要求的话,就没必要使用50毫秒,不然你会发现计算值跳动很大。

其次,时间精度问题,这个问题老生常谈了,鱼鹰建议是DWT,如果没有,找一个定时器代替也是可以的。

最后是单位时间算力问题,为了保证精确,可以关闭中断进行第一次计算,或者用短一点的时间,比如1毫秒得到一个算力,如果计算周期为100毫秒,那这个算力乘以100就行了。当然如果系统时钟不经常变的话,也可以通过静态方式先得到单位时间的算力,之后就以它为标准就可以了。这样就不会有长时间关中断的情况出现了。

但是计算算力的时候,千万千万要注意一点的是,C语言转化为汇编代码时,可能一样的代码,在不同的地方执行时间是不一样的 (比如前面代码的第一次计算和后面的计算,看似一样,但实际上有较大差别,原因就在于执行效率不一样),这个涉及到寄存器比内存效率更高的问题,所以计算算力时,可以把它封装成一个函数,这样,只要优化等级不变,那么函数的执行时间就可以认为是确定的。

有帮助的话,记得关注哦!

什么是PLC?单片机和PLC有什么区别?

自二十世纪六十年代美国推出PLC取代传统继电器控制装置以来,PLC得到了快速发展,在世界各地得到了广泛应用。同时PLC的功能也不断完善,随着计算机技术、信号处理技术、控制技术网络技术的不断发展和用户需求的不断提高,PLC在开关量处理的基础上增加了模拟量处理和运动控制等功能。今天的PLC不再局限于逻辑控制,在运动控制、过程控制等领域也发挥着十分重要的作用。

PLC

PLC (Programmable Logic Controller) 是可编程逻辑控制器,专为工业生产设计的一种数字运算操作的电子装置,它采用一类可编程的存储器,用于其内部存储程序、执行逻辑运算、顺序控制、定时、计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。是工业控制的核心部分。

单片机

单片机(Microcontrollers)是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在各个领域广泛应用。

诸如手机、汽车电子、工业上的步进马达、机器手臂的控制等,都可见到单片机的身影。单片机的特点是编程、维护相对复杂,编程方式常用C语言或者汇编语言,成本较低,I/O接口相对有限。

PLC与单片机的区别

PLC是应用单片机构成的比较成熟的控制系统,是已经调试成熟稳定的单片机应用系统的产品,有较强的通用性。单片机可以构成各种各样的应用系统,使用范围更广,但单就“单片机”而言,它只是一种集成电路,还必须与其它元器件及软件构成系统才能应用。从工程的使用来看,对单项工程或重复数极少的项目,采用PLC快捷方便,成功率高,可靠性好,但成本较高。对于量大的配套项目,采用单片机系统具有成本低、效益高的优点,但这要有相当的研发力量和行业经验才能使系统稳定。

从本质上说,PLC其实就是一套已经做好的单片机(单片机范围很广泛)系统。  

PLC的特点

PLC广泛使用梯形图代替计算机语言,对编程有一定的优势。你可以把梯形图理解成是与汇编等计算器语言一样,是一种编程语言,只是使用范围不同。而且通常做法是由PLC软件把你的梯形图转换成C或汇编语言(由PLC所使用的CPU决定),然后利用汇编或C编译系统编译成机器码。PLC运行的只是机器码而已,梯形图只是让使用者更加容易使用而已。

如所说,MCS-51单片机也可以用于PLC制作,只是8位CPU在一些高级应用如:大量运算(包括浮点运算)、嵌入式系统(现在UCOS也能移植到MCS-51)等,有些力不从心而已。不过加上DSP就已经能满足一般要求了,而且同样使用梯形图编程,我们可把梯形图转化为C51再利用KEIL的C51进行编译。不难发现不同型号的PLC会选用不同的CPU,其实也说明PLC就是一套已经做好的单片机系统。  

这样一看PLC其实并不神秘,不少PLC是很简单的,其内部的CPU除了速度快之外,其他功能还不如普通的单片机。通常PLC采用16位或32位的CPU,带1或2个的串行通道与外界通讯,内部有一个定时器即可,若要提高可靠性再加一个看家狗定时器问题就解决了。  

另外,PLC的关键技术在于其内部固化了一个能解释梯形图语言的程序及辅助通讯程序,梯形图语言的解释程序的效率决定了PLC的性能,通讯程序决定了PLC与外界交换信息的难易。对于简单的应用,通常以独立控制器的方式运作,不需与外界交换信息,只需内部固化有能解释梯形图语言的程序即可。

实际上,设计PLC的主要工作就是开发解释梯形图语言的程序。现在的单片机完全可以取代PLC。以前的单片机由于稳定性和抗电磁干扰能力比较的弱和PLC是没有办法相比的,现在的单片机已经做到了高稳定性和很强的抗干扰能力在某些领域已经实现了替换。

单片机可以取代PLC吗?

有人说这是个伪问题,单片机是元器件,PLC是由元器件以及庞大的软件构成的系统,两者在这一方面没有可比性 —— 大多PLC的控制芯片实际上就是单片机,也就是说可以将PLC看成是单片机的二次开发。单论工业防护等级,单片机的稳定性和可靠性能根本比不了PLC这种IP67类的产品( IP为标记字母,第一标记数字表示接触保护和外来物保护等级,第二标记数字表示防水保护等级)。而且就PLC这种能应对工业恶劣环境的产品还开发出一套冗余系统。

I/O功能

单片机的I/O点实在有限,而反观PLC呢?针对不同的现场信号,均有相应的I/O点可与工业现场的器件(如按钮、开关、传感电流变送器、电机启动器或控制阀等)直接连接,并通过总线与CPU主板连接。工业里几乎任意一条生产线,都有上百甚至上千I/O点,就这点单片机完全无法比拟。

开发周期

PLC的品牌多达200多种,几乎每个品牌都有不同编程软件,而且都在不断完善自己的编程软件,使之能够越来越简单的服务于电气工程师,而各种程序块也是越来越方便人性化的任意去调用,比如PID模块、运动控制模块等,大大减轻了工程师的开发压力也缩短了开发周期。

那单片机要如何实现?没有现成的模块使用,那就只能开发,那么做过非标自动化设备的工程师都会遇到工期不足问题。PLC这种高度集成化模块化的产品在达到满足设备所需的开发周期,在工期面前也是抓襟见肘,更不用说如同白纸一张的单片机。

通信距离

现在大多数流水线是要跨区域整合与监视的,所用的通讯方式多为以太网加中继器,或者直接走民用宽带光纤,所用的东西到最后很可能是用的就是微软的IE浏览器,很明显PLC是有RJ-45接口,即使本体没有RJ-45也可以配备以太网模块,可单片机搭载的PCB板能加上这个接口然后开发出以太网通信吗?开发需要多久?

编程语言

这点对单片机来讲是一个优势,同时也是一个劣势。上面提到PLC的品牌有两百多种,编程软件更多,尽管大多数PLC的编程语言都大同小异,但是每接触一款不同品牌的PLC,电气工程师就要从PLC的硬件参数、软元件、编程软件等等各个方面从头了解一次才能使用的得心应手。而单片机的编程语言用的是C语言或者汇编语言,这对于任何单片机都是通用的。换句话说,学会C语言或者汇编语言,便可以应用任何单片机开发想要的功能(前提是要有相关的电工电子学基础)。

但话又说回来,电气工程师不是电子工程师,他们的工作不是单单考虑单片机如何驱动继电器来控制机床的,甚至有的电气工程师都不会C语言、汇编语言之类的MCU开发语言。近些年,IEC-61131-3标准的推广,越来越多的PLC支持多种编程语言,如类似C语言的ST语言,类似电路图的CFC语言。这种便利的功能是传统单片机开发环境真的无法实现。

在工业控制领域,PLC占据绝对优势,就目前形势(单片机的功能、稳定性、易用性、编程及维护等)来看,单片机取代PLC那将是一项不可能完成,或者说期限趋向于无穷的艰巨任务。

相关问答

单片机 中ov位如何判别?

在单片机中,OV位是一个溢出标志位,用于表示浮点运算结果是否溢出。当浮点运算结果超出单精度浮点数的表示范围时,就会产生溢出,此时OV位会被置为1。可以通过...

DSP与 单片机 到底有什么区别啊?

如果是电力电子领域dsp一般指的是德州的Tms320F28335或者新出的28379系列,前者包含浮点运算单元,定时器,pwm发生器adc,串口,i2c等,后者在此基础上改进成了...

stm 单片机 的优点?

STM单片机,是一款性价比超高的系列单片机,功能及其强大。优点:专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARMCortex-M内核,同时具有一流的外设...

让小车到达指定位置有哪些PID算法?

许多学生不知道PID是什么,因为许多学生不是自动化的。他们需要信息和程序来开口说话。很明显,这种学习方法是错误的。至少,首先,您需要理解PID是什么。首先,...i...

如果程序算法没问题,电脑计算会有可能出错吗?

看这里的出错是怎么定义,如果所有的异常都被程序处理了,也许你可以认为这些异常都不算出错。比如try{b=1/0;}catch(Exceptione){thrownewE...看这里的....

c语言摄氏度与华氏温度如何转换?

摄氏度与华氏度的转换公式为C=(F-32)*5/9。不少人看到这样的转换公式就会将摄氏度C和华氏度F定义成浮点数类型的变量。然后采用C语言编写C=(F-32)*5/9的语...

计算机组成原理与微机原理的区别?

区别如下:微机侧重的是应用,也就是说你用汇编语言去做一些事情,如控制交通灯,彩灯等等,跟单片机类似,虽然说是微机原理,但由于是应用,所以学的时候你更...“...

一阶带通滤波器公式?

一阶滤波算法公式为:Y(n)=aX(n)+(1-a)Y(n-1)Y(n)-本次滤波输出值;Y(n-1)-上次滤波输出值;a-滤波系数。其中,滤波系数a越小,滤波结果越平滑,但反应灵敏...

三菱Q00UCPU三菱fx2n-64m价格还能买到吗

[回答]产品品牌:三菱产品名称:通用型CPU产品型号:Q00UCPU输入输出点数:1024点。输入输出元件数:8192点。程序容量:10K步。处理速度:0.08μs。程序存储器...

老铁们!能告诉我:供应时序控制器哪家好,有了解时序控制器...

[回答]计算机系统的硬件结构主要由四部分组成:控制器、运算器、内存和输入输出设备,其中,控制器和运算器统称为中央处理器。简称CPU.它是计算机硬件系统的...

猜你喜欢