产品概述

单片机分支程序 汇编入门第一篇,小白也能看懂

小编 2025-09-10 产品概述 23 0

汇编入门第一篇,小白也能看懂

cxuan自己的 Github 非常硬核,求各位大佬 star: https://github.com/crisxuan/bestJavaer

汇编代码是计算机的一种低级表示,它是一种低级语言,可以从字面角度去理解它,包括处理数据、管理内存、读写存储设备上的数据,以及利用网络通信等。编译器生成机器码经过了一系列的转换,这些转换遵循编程语言、目标机器的指令集 和操作系统。

指令集

指令集就是指挥计算机工作的指令,因为程序就是按照一定执行顺序排列的指令。因为计算机的执行控制权由 CPU 操作,所以指令集就是 CPU 中用来计算和控制计算机的一系列指令的集合。每个 CPU 在产出时都规定了与硬件电路相互配合工作的指令集。

指令集有不少分类,但是一般分为两种,一种是精简指令集,一种是复杂指令集。具体描述如下

精简指令集

精简指令的英文是 reduced instruction set computer, RISC,原意是精简指令集计算,简称为精简指令集,是 CPU 的一种 设计模式,可以把 CPU 想象成一家流水线工厂,对指令数目和寻址方式都做了精简,使其实现更容易,指令并行执行程度更好,编译器的效率更高。

常见的精简指令集处理器包括 ARM、AVR、MIPS、PARISC、RISC-V 和 SPARC

所以你就能理解

这本书是讲啥的了。

它主要是基于 MIPS 体系结构把冯诺依曼体系的五大组件进行了逐一的硬件实现 + 软件设计介绍,更为重要的是引入了诸多并行计算的内容,这是大部分教材中忽略或者内容较少的,会根据这个思路把并行相关的内容,结合 OpenMP, CUDA 和 Hadoop/Spark 整体融入到新书中,毕竟这是未来发展的趋势

还有这本书

这本书又是讲啥的。

这本书是讲 RISC-V 指令集的,因为指令集的不同也区分了三个版本,三个版本???嗯,还有下面这个

这本书是讲 ARM 指令集的。

所以一般在看 CASPP 的时候并发的看看这本书是非常不错的选择。

精简指令集一般具有如下特征

统一的指令编码通用的寄存器,一般会区分整数和浮点数简单的寻址模式,复杂寻址模式被简单指令序列来取代支持很少偏门的类型,例如 RISC 支持字节字符串类型。

复杂指令集

复杂指令集的英文是 Complex Instruction Set Computing, CISC,是一种微处理器指令集架构,也被译为复杂指令集。

复杂指令集包括 System/360、VAX、x86 等

复杂指令集可以说是在精简指令集之上作出的改变。

复杂指令集的特点是指令数目多而复杂,每条指令字长并不相等,计算机必须加以判读,并为此付出了性能的代价。

一般来说,提升 CPU 性能的方法有如下这几种

增加寄存器的大小增进内部的并行性增加高速缓存的大小增加核心时脉的速度加入其他功能,例如 IO 和计时器加入向量处理器硬件多线程技术

比较抽象,我们后面会组织成文章具体介绍一下。

C 编译器会接收其他操作并把其转换为汇编语言输出,汇编语言是机器级别的代码表示。我们之前介绍过,C 语言程序的执行过程分为下面这几步

下面我们更多的讨论都是基于汇编代码来讨论。

我们日常所接触的高级语言,都是经过了层层封装的结果,所以我们平常是接触不到汇编语言的,更不会用汇编语言来进行编程,这就和你不知道操作系统的存在一样,但其实你每个操作,甚至你双击一个图标都和操作系统有关系。

高级语言的抽象级别很高,但是经过了层层抽象之后,高级语言的执行效率肯定没有汇编语言高,也没有汇编语言可靠。

但是高级语言有更大的优点是其编译后能够在不同的机器上运行,汇编语言针对不同的指令集有不同的表示。并且高级语言学习来更加通俗易懂,降低计算机门槛,让内卷更加严重(当然这是开个玩笑,冒犯到请别当真)。

话不多说,了解底层必须了解汇编语言。否则一个 synchronized 底层实现就能够让你头疼不已。而且,天天飘着也不好,迟早要落地。

了解汇编代码也有助于我们优化程序代码,分析代码中隐含的低效率,并且这种优化方法一旦优化成功,将是量级的提高,而不是改改 if...else ,使用一个新特性所能比的。

机器级代码

计算机系统使用了多种不同形式的抽象,可以通过一个简单的抽象模型来隐藏实现细节。对于机器级别的程序来说,有两点非常重要。

首先第一点,定义机器级别程序的格式和行为被称为 指令集体系结构或指令集架构(instruction set architecture), ISA。ISA 定义了进程状态、指令的格式和每一个指令对状态的影响。大部分的指令集架构包括 ISA 用来描述进程的行为就好像是顺序执行的,一条指令执行结束后,另外一条指令再开始。处理器硬件的描述要更复杂,它可以同时并行执行许多指令,但是它采用了安全措施来确保整体行为与 ISA 规定的顺序一致。

第二点,机器级别对内存地址的描述就是 虚拟地址(virtual address),它提供了一个内存模型来表示一个巨大的字节数组。

编译器在整个编译的过程中起到了至关重要的作用,把 C 语言转换为处理器执行的基本指令。汇编代码非常接近于机器代码,只不过与二进制机器代码相比,汇编代码的可读性更强,所以理解汇编是理解机器工作的第一步。

一些进程状态对机器可见,但是 C 语言程序员却看不到这些,包括

程序计数器(Program counter),它存储下一条指令的地址,在 x86-64 架构中用 %rip 来表示。

程序执行时,PC 的初始值为程序第一条指令的地址,在顺序执行程序时, CPU 首先按程序计数器所指出的指令地址从内存中取出一条指令,然后分析和执行该指令,同时将 PC 的值加 1 并指向下一条要执行的指令。

比如下面一个例子。

这是一段数值进行相加的操作,程序启动,在经过编译解析后会由操作系统把硬盘中的程序复制到内存中,示例中的程序是将 123 和 456 执行相加操作,并将结果输出到显示器上。由于使用机器语言难以描述,所以这是经过翻译后的结果,实际上每个指令和数据都可能分布在不同的地址上,但为了方便说明,把组成一条指令的内存和数据放在了一个内存地址上。

整数寄存器文件(register file)包含 16 个命名的位置,用来存储 64 位的值。这些寄存器可以存储地址和整型数据。有些寄存器用于跟踪程序状态,而另一些寄存器用于保存临时数据,例如过程的参数和局部变量,以及函数要返回的值。这个 文件 是和磁盘文件无关的,它只是 CPU 内部的一块高速存储单元。有专用的寄存器,也有通用的寄存器用来存储操作数。条件码寄存器 用来保存有关最近执行的算术或逻辑指令的状态信息。这些用于实现控件或数据流中的条件更改,例如实现 if 和 while 语句所需的条件更改。我们都学过高级语言,高级语言中的条件控制流程主要分为三种:顺序执行、条件分支、循环判断三种,顺序执行是按照地址的内容顺序的执行指令。条件分支是根据条件执行任意地址的指令。循环是重复执行同一地址的指令。顺序执行的情况比较简单,每执行一条指令程序计数器的值就是 + 1。条件和循环分支会使程序计数器的值指向任意的地址,这样一来,程序便可以返回到上一个地址来重复执行同一个指令,或者跳转到任意指令。

下面以条件分支为例来说明程序的执行过程(循环也很相似)

程序的开始过程和顺序流程是一样的,CPU 从 0100 处开始执行命令,在 0100 和 0101 都是顺序执行,PC 的值顺序+1,执行到 0102 地址的指令时,判断 0106 寄存器的数值大于 0,跳转(jump)到 0104 地址的指令,将数值输出到显示器中,然后结束程序,0103 的指令被跳过了,这就和我们程序中的 if() 判断是一样的,在不满足条件的情况下,指令会直接跳过。所以 PC 的执行过程也就没有直接+1,而是下一条指令的地址。

一组 向量寄存器用来存储一个或者多个整数或者浮点数值,向量寄存器是对一维数据上进行操作。

机器指令只会执行非常简单的操作,例如将存放在寄存器的两个数进行相加,把数据从内存转移到寄存器中或者是条件分支转移到新的指令地址。编译器必须生成此类指令的序列,以实现程序构造,例如算术表达式求值,循环或过程调用和返回

认识汇编

我相信各位应该都知道汇编语言的出现背景吧,那就是二进制表示数据,太复杂太庞大了,为了解决这个问题,出现了汇编语言,汇编语言和机器指令的区别就在于表示方法上,汇编使用操作数来表示,机器指令使用二进制来表示,我之前多次提到机器码就是汇编,你也不能说我错,但是不准确。

但是汇编适合二进制代码存在转换关系的。

汇编代码需要经过 汇编器 编译后才产生二进制代码,这个二进制代码就是目标代码,然后由链接器将其连接起来运行。

汇编语言主要分为以下三类

汇编指令:它是一种机器码的助记符,它有对应的机器码伪指令:没有对应的机器码,由编译器执行,计算机并不执行其他符号,比如 +、-、*、/ 等,由编译器识别,没有对应的机器码

汇编语言的核心是汇编指令,而我们对汇编的探讨也是基于汇编指令展开的。

与汇编有关的硬件和概念

CPU

CPU 是计算机的大脑,它也是整个计算机的核心,它也是执行汇编语言的硬件,CPU 的内部包含有寄存器,而寄存器是用于存储指令和数据的,汇编语言的本质也就是 CPU 内部操作数所执行的一系列计算。

内存

没有内存,计算机就像是一个没有记忆的人类,只会永无休止的重复性劳动。CPU 所需的指令和数据都由内存来提供,CPU 指令经由内存提供,经过一系列计算后再输出到内存。

磁盘

磁盘也是一种存储设备,它和内存的最大区别在于永久存储,程序需要在内存装载后才能运行,而提供给内存的程序都是由磁盘存储的。

总线

一般来说,内存内部会划分多个存储单元,存储单元用来存储指令和数据,就像是房子一样,存储单元就是房子的门牌号。而 CPU 与内存之间的交互是通过地址总线来进行的,总线从逻辑上分为三种

地址线数据线控制线

CPU 与存储器之间的读写主要经过以下几步

读操作步骤

CPU 通过地址线发出需要读取指令的位置CPU 通过控制线发出读指令内存把数据放在数据线上返回给 CPU

写操作步骤

CPU 通过地址线发出需要写出指令的位置CPU 通过控制线发出写指令CPU 把数据通过数据线写入内存

下面我们就来具体了解一下这三类总线

地址总线

通过我们上面的探讨,我们知道 CPU 通过地址总线来指定存储位置的,地址总线上能传送多少不同的信息,CPU 就可以对多少个存储单元进行寻址。

上图中 CPU 和内存中间信息交换通过了 10 条地址总线,每一条线能够传递的数据都是 0 或 1 ,所以上图一次 CPU 和内存传递的数据是 2 的十次方。

所以,如果 CPU 有 N 条地址总线,那么可以说这个地址总线的宽度是 N 。这样 CPU 可以寻找 2 的 N 次方个内存单元。

数据总线

CPU 与内存或其他部件之间的数据传送是由数据总线来完成的。数据总线的宽度决定了 CPU 和外界的数据传输速度。8 根数据总线可以一次传送一个 8 位二进制数据(即一个字节)。16 根数据总线一次可以传输两个字节,32 根数据总线可以一次传输四个字节。。。。。。

控制总线

CPU 与其他部件之间的控制是通过 控制总线 来完成的。有多少根控制总线,就意味着 CPU 提供了对外部器件的多少种控制。所以,控制总线的宽度决定了 CPU 对外部部件的控制能力。

一次内存的读取过程

内存结构

内存 IC 是一个完整的结构,它内部也有电源、地址信号、数据信号、控制信号和用于寻址的 IC 引脚来进行数据的读写。下面是一个虚拟的 IC 引脚示意图

图中 VCC 和 GND 表示电源,A0 - A9 是地址信号的引脚,D0 - D7 表示的是控制信号、RD 和 WR 都是好控制信号,我用不同的颜色进行了区分,将电源连接到 VCC 和 GND 后,就可以对其他引脚传递 0 和 1 的信号,大多数情况下,+5V 表示1,0V 表示 0

我们都知道内存是用来存储数据,那么这个内存 IC 中能存储多少数据呢?D0 - D7 表示的是数据信号,也就是说,一次可以输入输出 8 bit = 1 byte 的数据。A0 - A9 是地址信号共十个,表示可以指定 00000 00000 - 11111 11111 共 2 的 10次方 = 1024个地址。每个地址都会存放 1 byte 的数据,因此我们可以得出内存 IC 的容量就是 1 KB。

如果我们使用的是 512 MB 的内存,这就相当于是 512000(512 * 1000) 个内存 IC。当然,一台计算机不太可能有这么多个内存 IC ,然而,通常情况下,一个内存 IC 会有更多的引脚,也就能存储更多数据。

内存读取过程

下面是一次内存的读取过程。

来详细描述一下这个过程,假设我们要向内存 IC 中写入 1byte 的数据的话,它的过程是这样的:

首先给 VCC 接通 +5V 的电源,给 GND 接通 0V 的电源,使用 A0 - A9 来指定数据的存储场所,然后再把数据的值输入给 D0 - D7 的数据信号,并把 WR(write)的值置为 1,执行完这些操作后,即可以向内存 IC 写入数据读出数据时,只需要通过 A0 - A9 的地址信号指定数据的存储场所,然后再将 RD 的值置为 1 即可。图中的 RD 和 WR 又被称为控制信号。其中当WR 和 RD 都为 0 时,无法进行写入和读取操作。

总结

此篇文章我们主要探讨了指令集、指令集的分类,与汇编有关的硬件,总线都有哪些,分别的作用都是什么,然后我们以一次内存读取过程来连接一下 CPU 和内存的交互过程。

原创不易,如有帮助还请各位读者四连(点在、在看、分享、留言),感谢各位大佬

关注公众号 程序员cxuan 回复 cxuan 领取优质资料。

我自己写了六本 PDF ,非常硬核,链接如下

我自己写了六本 PDF ,非常硬核,链接如下

我自己写了六本 PDF ,非常硬核,链接如下

电子器件的“中控室”:单片机MCU详解

上一篇(只有想不到,没有嵌不到,嵌入式系统科普 )文章介绍了嵌入式系统的组成部分。其中提到了单片机MCU,其实它也是一个小系统,它是控制电子产品的大脑。现如今,我们生活中的许多电器都含有单片机。例如:手机、电视机、冰箱、洗衣机、以及开关、LED等。那么,什么是单片机?它在这些电器中究竟做了些什么呢?以及是如何构成的?

它是如何诞生的

单片机诞生于1971年,经历SCM、MCU、SoC三大阶段。单片机由以前的1位、4位、8位、16位。早期的单片机都是4位或8位。其中最成功的是英特尔的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。

随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大的提高。如今已发展到32位甚至64位。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高,相继诞生了一批经过市场考验获得良好口碑的单片机制造厂商。

“神通广大”,到哪儿都有它

实际工作中并不是任何场合都要求计算机有很高的性能。应用的关键看是否够用,是否有很好的性价比。单片机是电器动作的关键,是指挥硬件运行的。例如:接收按钮或按键的输入信号,按照事先编好的程序,指挥马达和LCD的外围功能电路动作。

为什么很多电器设备都要使用单片机呢?我们用一个点亮LED电路为例来说明。

(右)无单片机的电路是一个由LED,开关和电阻构成的简单电路。很显然,使用单片机的电路要复杂得多,而且设计电路还要花费精力与财力。这样看来使用单片机并没有什么优点,其实不然。

如果我们让这个电路做一些比较复杂的操作,会怎么样呢。例如:如果希望LED在按下开关后,经过一段时间再点亮或熄灭,那么,对于安装有单片机的电路来说,只需更改单片机中的程序就可以了,并不需更改原电路。另一方面,对于没有单片机的电路来说,就必须在元电路中加入定时器IC,或者用标准逻辑IC和FPGA构成逻辑电路,才能实现这个功能。也就是说,在更改和添加新功能时,带有单片机的电路显然更加容易实现。

单片机通常用于工业生产的控制、生活与程序和控制有关领域。由于单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。而个人电脑中也会有为数不少的单片机在工作。据了解,一辆汽车上要配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作。这样算下来,单片机的数量已经远超过地球人口的数量了。

那么“无所不能”的单片机都由哪些器件构成的?

以PC为例,一台计算机主要有这几个部位组成:中央处理单元CPU(进行运算、控制)、随机存储器RAM(数据存储)、存储器ROM(程序存储)、输入/输出设备I/O(串行口、并行输出口等)。在个人计算机上这些部份被分成若干块芯片,安装在一个被称之为主板的印刷线路板上。而在单片机中,这些部份全部被做到一块集成电路芯片中,所以就称为单片机,而且有一些单片机中除了上述部份外,还集成了其它部份如模拟量/数字量转换(A/D)和数字量/模拟量转换(D/A)等。此外,现在的单片机绝大多数都是基于冯·诺伊曼结构。

以51单片机为例,其功能组件及作用主要有:

1、CPU主芯片(内部通过总线连接扩展的设备)

2、时钟电路(为单片机提供震荡脉冲)

3、电源电路(为单片机提供电源)

4、内部数据存储器RAM(包括通用数据寄存器和专用寄存器SFR,主要是数据存储区。)

5、程序存储器ROM(主要是存储程序,51系列有4K内部程序ROM,可以外扩64K。)

6、并行端口4*8位(P0,P1,P2,P3主要是数据交换接口。)

7、串行口(TXD,RXD用于串口通信。)

8、中断系统(外中断0,定时计数T0,外中断1,定时计数T1,串口中断。)

9、定时/计数器(16位用于外部的计数和定时功能。)

在这些组成里,内存是单片机的记忆装置,主要记忆程序和数据,但ROM与RAM有所区别:

ROM是只读内存的简称。保存在ROM中的数据不能删除,也不会因断电而丢失。ROM主要用于保存用户程序和在程序执行中保持不变的常数。

RAM是可随机读/写内存的简称。可以随时读写数据,但关机后,保存在RAM中的数据也随之消失。主要用于存储程序中的变量。在单芯片单片机中,常常用SRAM作为内部RAM。SRAM允许高速访问,但是,内部结构太复杂,很难实现高密度集成,不适合用作大容量内存。除SRAM外,DRAM也是常见的RAM。DRAM的结构比较容易实现高密度集成,因此,比SRAM的容量大。但是,将高速逻辑电路和DRAM安装于同一个晶片上较为困难,因此,一般在单芯片单片机中很少使用,基本上都是用作外围电路。

工作原理

虽说CPU相当于人的大脑,但是它却不能像人的大脑一样,能有意识的、自发的思考。CPU只能依次读取并执行事先存储在内存中的指令组合。

单片机自动完成赋予它的任务过程,即一条条执行的指令过程,所谓指令就是把要求单片机执行的各种操作用的命令的形式写下来,这是在设计人员赋予它的指令系统所决定的,一条指令对应着一种基本操作;单片机所能执行的全部指令,就是该单片机的指令系统,不同种类的单片机,其指令系统亦不同。

所以必须把要把问题编成一系列指令,这一系列指令的集合就成为程序,程序需要预先存放在存储器中。存储器由许多存储单元组成,你可以想像成宾馆的房间,指令就存放在这些房间里,房间里的指令取出并执行就像入住要分配房间一样,每一个存储单元也必须被分配到唯一的地址号,该地址号称为存储单元的地址,这样只要知道了存储单元的地址,就可以找到这个存储单元,其中存储的指令就可以被取出,然后再被执行。

主流单片机

现在主流单片机有:

51系列单片机——对所有兼容Intel 8031指令系统的单片机的统称,51单片机是基础入门的一个单片机,还是应用最广泛的一种。

PIC系列单片机——用来开发的去控制外围设备的集成电路,有计算和记忆功能,处理能力一般,存储器容量也很有限。

AVR系列单片机——AVR最大的优点就是哈佛结构速度快;片上资源丰富;驱动能力强;功耗低;可选择型号种类多;性价比高;保密性好;带PWM脉冲宽度调制、串行外设接口SPI,片内RC 振荡器,SRAM比51大。

这些是应用最多的三大系列单片机。其主要特点就是:51系列单片机是冯.诺依曼结构,后两种是哈佛结构。

典型玩家介绍

经多年发展,MCU厂商可谓是多种多样。简单介绍下这个圈里典型玩家

1. 恩智浦(收购飞思卡尔)

单片机是基于80C51内核的单片机,嵌入了掉电检测、模拟以及片内RC振荡器等功能,这使51LPC在高集成度、低成本、低功耗的应用设计中可以满足多方面的性能要求。NXP的MCU几乎都是采用cortex-m系列架构。

2. 瑞萨电子

NEC电子和瑞萨科技于2010年4月1日通过合并诞生了“瑞萨电子”,现为全球首屈一指的微控制器供应商,也是SoC系统晶片与各式类比及电源装置等先进半导体解决方案的领导品牌之一。他们推出的针对中国市场的MCU产品RL78系列分为通用产品和集成LCD驱动的产品,通用产品的升级款又围绕着传感器、小系统、马达驱动等具体应用领域做了相应拓展。

3. 微芯科技(Microchip)(收购爱特梅尔(Atmel))

微芯科技是全球领先的单片机和模拟半导体供应商,微芯单片机是市场份额增长最块的单片机。 他们强调节约成本的最优化设计,使用量大、档次低、价格敏感的产品。

4.三星(Samsung)

三星单片机有KS51和KS57系列4位单片机,KS86和KS88系列8位单片机,KS17系列16位单片机和KS32系列32位单片机。

5. 意法半导体(ST)

意法半导体微控制器拥有一个强大的产品阵容,从稳健的低功耗8位单片机STM8系列,到基于各种ARM Cortex-M0和M0+、 Cortex-M3、Cortex-M4、Cortex-M7内核的32位闪存微控制器STM32家族。STM32系列32位微控制器基于Arm® Cortex®-M处理器,旨在为MCU用户提供新的开发自由度。它包括一系列产品,集高性能、实时功能、数字信号处理、低功耗/低电压操作、连接性等特性于一身,同时还保持了集成度高和易于开发的特点。

6. 英飞凌(Infineon)

其前身是西门子集团的半导体部门。英飞凌8位单片机能实现高性能的电机驱动控制,在严酷环境下(高温、EMI、振动)具有极高的可靠性。英飞凌针对中国市场推出的XMC1000工业单片机,在电机控制领域拥有很高的性价比。

7. 德州仪器(TI)

TI是全球领先的模拟及数字半导体 IC 设计制造公司。除了提供模拟技术、数字信号处理 (DSP) 以外,TI 在单片机领域也涉入较深,推出一系列的32位单片机,其中Piccolo系列微处理器最具代表性,具体型号如C2000和F28x系列。

8. 东芝(Toshiba)

东芝单片机的特点从4位机到64位,门类齐全。4位机在家电领域仍有较大的市场。8位机主要有870系列、90系列等,该类单片机允许使用慢模式,采用32K时钟时功耗低至10uA数量级。CPU内部多组寄存器的使用,使得中断响应与处理更加快捷。东芝的32位单片机采用MIPS3000ARISC的 CPU结构,面向VCD、数字相机、图像处理等市场。

9. Silicon Laboratories(芯科实验室)

Silicon Laboratories成立于1996年,位于美国德州奥斯汀市,是一家专业研发设计类比电路及混合信号IC的公司,为成长快速的通信产业设计等提供广大应用。在8051系列MCU领域居于领先军团行列。这家公司2013收购了一家叫Energy Micro的节能型MCU公司,所以产品有两个型号。

10. Maxim

Maxim的超低功耗32 位 Arm® Cortex®-M4 FPU微控制器(单片机),可以帮助您在任意地方收发其他超低功耗MCU的产品。超低功耗MCU系列产品既智能又省电。他们在去年发布了一款名为MAX78000的革命性芯片。这颗低功耗神经网络加速微控制器能将人工智能(AI)推向边缘端,更重要的是,因为其低功耗特性,那就意味着即使在将其应用在电池供电的物联网(IoT)设备里,芯片性能并未受到影响。

11. ADI

ADI提供日渐增多的DSP、混合信号控制处理器、嵌入式处理器和模拟微控制器产品,适合广泛的通用和专用需求。例如产品包括:带有微处理器的模数转换芯片ADuC844和ADuC846,用于IoT超低功耗MCU ADuCM4050。

12. 高通(Qualcomm)

高通的MCU主要应用于智能手机、平板电脑、无线调制解调器等等,功能非常强大。主要提供16位,32位MCU。

其余厂商见图片。

MCU作为微型计算机的一个重要分支,应用面很广,发展很快。自MCU诞生至今,已发展为上百种系列的近千个机种。而且随着半导体集成工艺的不断发展,MCU的集成度将更高、体积将更小、功能将更强。

相关问答

单片机 原理及应用主要学什么?

单片机原理:单片机由运算器、控制器、存储器、输入输出设备构成。单片机自动完成赋予它的任务的过程,也就是单片机执行程序的过程,即一条条执行的指令的过程...

单片机 如何识别G代码 程序 ?

单片机内微处理器核心可识别执行特定格式的指令,这些指令包含内存读写、算数逻辑运算、分支跳转等操作。所有可识别的指令构成对应于这个单片机的指令集。在...

PLC和 单片机 的区别是什么?

[最佳回答]单片机是一种芯片,在一定场合,配合外围电路,可以用来设计所需要的各种功能,大都用汇编语言、C语言等来开发嵌入式软件,可应用于各种领域。PLC是一...

单片机 试题1.系列指令中,哪个寻址方式是对源操作数的寄存器...

A.MOVA,#30HB.MOVA,#30HC.MOVA,R0D.MOVA,@R02.MCS-51单片机的最小时序定时单位是()。A.状态B.拍C.机器周期...

单片机 和嵌入式的区别是什么

[回答]单片机是计算机发展的一个重要分支领域,一个嵌入式系统装置一般都由嵌入式计算机系统和执行装置组成,嵌入式计算机系统是整个嵌入式系统的核心。接...

单片机 主要应用于哪些领域? - 潘耶耶- 的回答 - 懂得

1.单片在一个系统中只使用一片机,这是目前应用最多的一种方式。主品单片机与传统的机械产品相结合,使传统的机械产品结构简单化、控制智能化,构成了...

51 单片机 入门教程?

1、单片机概念:在一片集成电路芯片上集成微处理器(CPU)、存储器(ROM和RAM)、I/O接口电路,从而构成了单芯片微型计算机,即单片机(singlechipMicrocomput...变量....

mcu和 单片机 的区别?

mcu与单片机有什么区别吗区别如下所示:1、原理不同。mcu又称单片微型计算机(SingleChipMicrocomputer)或者单片机。而单片机则是把一个计算机系统集成到...

单片机 主要应用于哪些领域? - 134****2754 的回答 - 懂得

单片机广泛应用于仪表、家用电器、医用理及过程控制等领域。1、智能仪器单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点...

单片机 一条指令如何知道占多少地址?

回答如下:单片机的指令地址由指令集的位数决定。一般情况下,单片机指令的地址是固定的,占用连续的内存空间。例如,对于8位单片机,指令地址通常为8位,即地...

猜你喜欢