技术文档

基于单片机的温度控制器 智能温控系统的设计

小编 2024-11-24 技术文档 23 0

智能温控系统的设计

摘 要 : 温度是生产、生活及科学研究等方面中的一个重要参数,在很多场合起着极为关键的作用,需要精确控制。因此,高精度温度控制器具有广阔的市场前景和迫切的应用需求。研究和设计了一个由单片机控制的具有一定智能水平的温度控制系统,能够按照实际需要设定温度控制的范围,并根据在温度调整过程中的温度变化情况,输出智能控制信号,实现温度的精确控制。

0 引言

随着社会发展和科技进步,温度的测量及控制在人们的生产、生活和科学研究中发挥着越来越重要的作用[1-3]。在现代社会中,对各种过程的控制要求日趋精密,对于温度的测量和控制要求也进一步提高[4-9]。目前国内的传统温控箱控制精度低,价格高,难以满足高精度温度控制的要求,国外的温度控制箱控制精度高,但价格昂贵,如德国西门子(Siemens)、恩德斯豪斯公司(Endress+Hauser)、美国江森(Johnson)、霍尼韦尔(Honeywell)、罗斯蒙特公司(Rosemount)、英国森威尔(Saswell)、瑞士ABB公司、日本松下公司(Panasonic)等都生产性能优良的温度控制箱,在社会各行业中得到广泛的应用。为满足国内低成本温度控制要求,本文研制了一个采用单片机控制的高精度智能温度控制箱,它具有结构紧凑、工艺简单、智能化等优点。

1 温控系统硬件设计

温度控制的基本原理是在需要进行温度控制的场合用传感器测量其温度值,与控制器内存储的温度值进行比较,当测得的温度高于或低于设定值时,启动加热或降温设备,使温度回归到设定值范围内,其原理如图1所示。

1.1系统总体结构设计

本温控箱以单片机STC89C52作为温控中心,用温度传感器DS18B20作为温度测量单元,将采集的温度值经过串行通信方式传输到温控中心进行判断,并进行智能处理。当测得的温度T低于设定的最低温度Tl时,单片机发出控制信号,启动加热器件;当测得的温度T高于设定的温度Th时,单片机发出控制信号,启动降温器件,将温度保持在设定的范围内,完成温控工作。本温控器带有LCD显示模块和按键输入模块,可显示实时温度值和现场设定温度控制范围。温控系统主要由温度检测模块、单片机控制模块、温度显示模块、温控执行模块(继电器及加热、降温器件)等部分组成。

1.2 温度检测单元设计

为提高测温精度,降低成本,本温控箱采用较成熟的DS18B20温度传感器来完成温控箱内部和外部的温度检测。DS18B20是由Dallas公司生产的一线式数字温度传感器,它将温度感测、信号变换、数据存储、A/D转换等功能集成于一体,其温度检测范围宽,达到-55℃~+125℃,可以用一线总线方式连接微处理器,以编程方式(9~12位)转换精度,测温分辨率达0.062 5 ℃。DS18B20温度传感器的工作电源可从外部输入,也可采用寄生电源方式工作;多个DS18B20可以并联连接到CPU,实现多个DS18B20与CPU的通信,因此连线少,可节省引线和逻辑电路,减少CPU端口的占用,但以增加软件复杂性为代价,对读写的数据位有着严格的时序要求。

DS18B20温度传感器具有体积小、功能强、精度高、连接方便、抗干扰性好等优点,在工业控制、智能家居等环境中得到较广泛的应用。

1.3 温度控制执行部分设计

由于单片机的输出功率较小,不宜直接驱动继电器,否则会造成单片机功耗过大,加重单片机内部电源的负担,易导致单片机工作不稳定。为安全平稳控制继电器,本温控系统采用固态继电器SSR-40DA,固态继电器也称作固态开关SSR(Solid State Relay),它是利用现代微电子技术与电力电子技术相结合而发展起来的一种新型无触点电子开关,集光电藕合、大功率双向晶闸管及触发电路、阻容吸收回路于一体,用于代替传统的电磁式继电器,实现对单相或者三相电动机的正反转控制,或者其他控制。无触点无动作噪音,具有开关速度快、无火花干扰和可靠性高等优点。

1.4 温度显示模块

温度显示模块采用1602C型字符型液晶显示器。1602C型显示器具有功耗低、体积小、显示内容丰富、超薄轻巧等优点,在袖珍式仪表和低功耗应用系统中应用广泛,是一种专门用于显示字母、数字、符号等点阵式的LCD,显示的格式为16×2行。在模块内部已经存储了160个不同的点阵字符图形,这些字符包括:英文字母的大小写、阿拉伯数字、常用的符号等,每一个字符都有一个固定的代码。

1.5 加热/通风执行机构

当单片机检测到温度不在调控范围以内时,需要启动加热或降温器件使温度回到温控范围内。一般加热的方式为电热丝和风扇,本系统用电热丝为加热器件,以风扇为降温器件。为使温度变化过程平稳,通常要对加热或降温器件的功率进行调整。功率调整的方法一般用可控硅,具体的方式有调相和PWM。调相就是调整加在负载上的电压的导通角,PWM是通过调整单位时间内加在负载上的电压次数来改变负载功率。为降低对电网的污染和对其他用电器件的干扰,本系统采用PWM方式对温控器件进行调整。

1.6 报警电路

本温控箱采用声光报警方式进行异常状态报警,以晶体管和蜂鸣器构成声音报警电路,以红、绿色发光二极管构成光线报警电路。在系统正常工作时,只有绿色发光二极管点亮;当系统测得的温度超出设定的温度范围,绿色发光二极管熄灭,红色二极管点亮,同时由单片机控制蜂鸣器发出报警声,10 s后停止声音报警。

2 温控系统软件设计

2.1 控制流程图

智能温控系统控制流程如图2所示。系统开机后首先初始化程序,接着进行温度测量,将测得的温度值通过显示屏显示;检测是否有按键操作,若有则执行按键扫描及处理程序,存储新输入的温度控制范围,若无按键操作则直接显示当前温度及设定值;将测得的温度值与设定值进行比较,若在设定范围内,程序自动返回测量温度,若不在设定范围内,则程序根据测得的温度与设定值,确定调温停止的温度,进行智能处理后输出控制信号,启动报警,运行加热或降温设备进行温度调节。

2.2 软件设计

为实现上述控制流程,达到温度控制目的,本系统设计了温度采集程序、LCD显示程序、按键扫描及处理程序、温度比较及计算程序、智能控制程序、报警程序等,其控制过程如图2所示。

温度采集程序用于将DS18B20所采集的温控箱内部、外部温度通过串行通信送入到指定地址;LCD显示程序用于显示测得的温度值及设定温度等数据;按键扫描及处理程序用于处理按键相关事项,即判断是否有按键行为、记录按键输入值及将输入值送往指定地址等。

传统的温控箱只是简单地将测量得到的实时温度值与设定值进行比较,控制加热器件或降温器件的通断状态进行温度调整。这种控制方式很容易出现过冲现象,对控制精度造成严重影响。同时单片机的功能只使用了一小部分,造成了资源浪费。本系统利用单片机的计算和比较功能对加热和降温过程进行智能控制,能较好地解决过冲问题,减少加热和降温状态的转换次数,实现温度的平稳控制,同时节省能源。

在进行智能控制时,根据设定的温度范围及探测到的系统温度,确定加热或降温时的结束温度,如果环境温度高于设定温度的上限,则降温器件停止工作时的温度由单片机根据公式Th-0.8(Th-Tl)计算出来。当环境温度低于设定温度的下限,则加热器件停止工作时的温度由单片机根据公式Tl+0.8(Th-Tl)计算出来。当环境温度在设定温度的上、下限之间,则降温器件停止工作时的温度由单片机根据公式Tl+0.5(Th+Tl)计算出来,通过此种方式进行温度调控,能有效减少加热或降温器件的启停次数,延长系统寿命,同时也使温度变化过程更平稳。在调温过程中以PID方式对系统温度进行控制,即在控制过程中,将测得实际温度值与设定值进行比较,经单片机计算后得到温度的偏差值、偏差变化率等,根据温度值、偏差值、偏差变化率算出控制增量,以控制加热器件或风扇的导通时间,达到温度控制的目的。

报警程序用于输出报警信号,控制报警电路实现声光报警。

3 总结

本温控箱以单片机作为温控系统的中央控制单元,充分利用了单片机的运算功能对温控过程进行自动控制,实时性强,可实现高精度控制,同时本系统设计合理,结构简单,具有可靠性高、运行稳定、成本较低、操作简便等优点,适用于需要较高控制精度的各种场合。

参考文献

[1] 张瀚文,张博,杜岩,等.多路高精度扩散炉温度控制系统的设计[J].微型机与应用,2013,32(17):83-86.

[2] 刘雷,张高飞,尤政.环境温度对RF-MEMS开关闭合电压影响研究[J].传感器与微系统,2013,32(5):6-8.

[3] SELAK G V, PERICA S, BAN S G, et al. The effect of temperature and genotype on pollen performance in olive[J]. Scientia Horticulturae, 2013,156(1):38-46.

[4] 陈新海,张侃健,魏海坤,等.无人值守的南极科考平台温控系统设计与实现[J].自动化仪表,2013,34(10):23-27.

[5] VITEL G, SURU M G, PARASCHIV A L. Structural effects of training cycles in shape memory actuators for temperature control[J]. Materials and Manufacturing Processes, 2012, 28 (1): 79-84.

[6] 李晓明,冯志书,徐刚,等.基于PC104的某型航空发动机排气温度测试系统[J].微型机与应用,2013,32(11):95-96.

[7] COSTA B A, LEMOS J M, ROSA L G. Temperature control of a solar furnace for material testing[J]. International Journal of Systems Science, 2011,42(8):1253-1264.

[8] 文春明,温志渝,尤政,等.硅基微型超级电容器三维微电极结构制备[J].电子元件与材料,2012,31(5):42-45.

[9] ASTRAIN D, MART?魱NEZ A, GORRAIZ J, et al. Computational study on temperature control systems for thermoelectric refrigerators[J]. Journal of Electronic Materials, 2012, 41 (6): 1081-1090.

基于单片机的双电源自动切换开关控制器

武彦飞,童峥嵘,邢文华,王俊峰

(天津理工大学 计算机与通信工程学院,天津 300384)

摘要 :设计了一种以STC单片机为核心的双电源自动转换开关控制器,具有自动检测、诊断和控制的功能。系统电源出现故障时,短时间内能够自动从故障电源切换到备用电源供电。给出了该控制器的硬件及软件设计方案。该控制器切换时间短且抗干扰性强,具有较高的可靠性。

0引言

随着社会科技的发展与进步,生活水平的日益提高,人们对电的依赖性逐渐加强,电力系统的连续可靠性成为保障正常生活的重要指标。特别是一些重要用电场所(医院、机场、大型生产线、银行等),电力系统出现故障时,如果不能及时供电,将会带来巨大损失[1]。自动转换开关(Automatic Transfer Switching Equipment,ATSE)便是为了确保供电连续而设计的。ATSE 由开关主体和其他必需的电器组成,设有监测电源电路对电源进行故障检测,并且能够自动将一个或几个负载电路从一个电源转换至另一个电源[2]。1992年在上海金茂大厦的设计中我国首次引入ATSE,此后在我国的建筑工程等领域,这种开关装置得到了普遍应用[3]。国际电工委员会标准将ATSE分为CB级和PC级。CB级ATSE结构复杂、体积大、切换时间长且可靠性较差,故随着ATSE技术的不断进步,其应用领域逐渐缩小。PC级ATSE结构简单、体积小、切换时间短且安全可靠,近年来逐渐占据了ATSE的主流市场[4]。

本文设计了一种以STC单片机为控制核心的双电源自动转换开关控制器。系统设有常用与备用两个电源,正常情况下常用电源供电;设有电压检测模块对常用、备用电源电压进行实时监测;设有单片机控制模块对采集电压进行处理与判断,并根据判断结果发出相应控制命令;设有电机与电闸切换模块响应单片机的控制命令,快速进行电源切换动作。当系统判断常用电源出现故障(如欠压、过压、断相)时,各模块协同运作,自动切换到备用电源供电;当系统判断常用电源恢复正常时,再自动切换回常用电源供电。STC单片机具有体积小、数据处理速度快、抗干扰性强和功耗低的特点[3],保障该控制器的有效性。相较于传统的以单片机为基础的双电源自动转换开关控制器,为了提高本控制器的抗干扰能力,在电压检测电路中加入光电隔离电路和滤波电路,有效隔离环境、电磁场等因素的干扰;软件采用C语言及其内核函数编程,语法灵活;用内部逻辑关系代替实际的硬件连接,避免大量中间连线的干扰,保障该控制器的可靠性。

1系统总体设计

系统主要由电压检测模块(常用电检测和备用电检测)、电机模块、电闸模块、按键控制模块以及故障报警模块组成,结构框图如图1所示。电源模块在常用电源与备用电源之间选择一路为单片机供电[5];电压检测模块

对常用电源与备用电源各个相的电压进行检测,检测结果作为采样值送入单片机。单片机对接收到的信号进行处理与判断,当检测出常用电源有任意一相电压信号不正常时,单片机对继电器与电机发出控制命令,使电机反转,备用电闸闭合,控制面板上备用电源指示灯亮,备用电源供电;当检测出常用电源恢复正常后,单片机对继电器与电机发出控制命令,使电机正转,备用电闸断开,常用电闸闭合,从备用电源切换到常用电源供电,控制面板上常用电源指示灯亮。同时设计故障报警模块和按键控制模块,便于及时进行故障检修以及人工切换电源。

系统实现的主要功能如表1所示。状态1表示继电器控制电机,保持常用电闸闭合,系统使用常用电源。状态2表示继电器控制电机,使备用电闸闭合,系统使用备用电源,系统向外报警,常用电故障。状态3表示继电器控制电机,保持常用电闸闭合,系统使用常用电源,系统向外报警,备用电源故障。状态4表示系统不工作。

2硬件设计

2.1实时电压检测

电压检测电路对常用电源与备用电源输入的三相交流电压(NA、NB、NC)进行检测,系统采集三相电压值作为常用电源与备用电源正常的标志。当检测到其中任何一相电压不正常时,表明电源发生故障。通过STC204D2单片机A/D模块编程把所采集到的信号模拟量转换为数字量,判断常用电源是否供电正常,进而控制继电器,驱动电机切换电源。在电压信号检测电路中加入光电耦合电路和滤波电路,增强控制器硬件抗干扰能力。

STC204D2单片机内部A/D转换采用均方根算法,电压的公式可以表示为:

式中:U为模拟量转换为数字量的电压值;T为采样时间;uL(t)为采样电压瞬时值。

由于采集到的都是不连续的点,所以将公式离散后进行数字化。离散后的公式为:

式中:N为每个周期的采样点个数;uLj为第j个电压采样值。

常用电源火线NA作为电源部分为系统供电,如图2所示。经过变压器后输出12 V交流电,在R2与R3之间进行分压。变压器输出为正电压时,NA点为正常分压;变压器输出为负电压时,由于二极管D1的钳位电压作用,NA将固定在-0.7 V。最终将检测值输出到单片机A14口。系统采集NA的值作为常用电正常的标志之一。

对图2电路进行仿真,NA点输出波形如图3所示。输入为220 V 50 Hz交流电,测得NA点电压值约为1.94 V。

常用电火线NB与NC一同检测,如图4所示。NB信号经过R4、R5、R6分压,经过第一个光电耦合器U1输出,作为第二个光电耦合器U2的集电极输入。其中C4的作用是使第二个光电耦合器输入电压稳定,C5与R10的作用是将信号转变为高电平输出给单片机。NB与NC间存在相位差,同时有电时NBC处能够检测到直流信号,最终输出给单片机A13口。NBC电压作为常用电的标志之一。

对图4电路进行仿真,第一个光电耦合器输出NB点与NBC点的输出波形如图5。第一个光电耦合器导通,输出电压降低,为C4充电,两个光电耦合器依次导通,为NBC逐渐充到高电平的电压,输入为220 V 50 Hz交流电,仿真得到NBC点电压值约为4.3 V。检测时间为0.2 s。

2.2常用、备用电源切换的硬件实现

系统存在常用、备用两路电源,各由一个电闸控制。两个电闸间设计一个由电机控制的切换装置,电机正转时, 图6电机控制电闸示意图

常用电闸闭合,常用电源供电。电机反转时,备用电闸闭合,备用电源供电,如图6。

单片机通过cont0、cont1、cont2三个端口控制继电器J3、J1、J2,实现电机供电选择、电机旋转方向选择的功能[6],最终控制电机进行常用、备用电源切换,如图7。cont2驱动J2在常用电与备用电之间选择一路电为电机供电;cont0驱动J3控制电机的正转与反转。若J2直接同时接入常用电与备用电,则切换时电流较大,容易产生火花,比较危险,故设计cont1驱动J1控制备用电的接入,在J2接入备用电之前对备用电进行断开处理,仅当常用电不正常需要备用电时再去接通。

3软件设计

软件设计部分包括显示程序与控制程序。显示程序用来显示检测到的实时电压值,供人工查询;控制程序用来实现单片机对继电器与电机的控制,完成常用、备用电源之间的转换。图8为控制程序流程图。软件程序采用C语言及其内部特定的内核函数编写,提高了程序运行效率;采用“指令冗余”技术,多编写单字节指令,在双字节、三字节指令后面加两条单字节指令NOP,增强了控制器软件抗干扰能力[7]。

首先,对单片机以及继电器进行初始化设置。然后,对常用电源电压值进行判断。如果常用电源三相电压值均正常,则继续对备用电源输入电压值进行判断:备用电源正常,重新初始化进行新一轮判断;备用电源不正常,则备用报警,持续检测备用电源直至其正常为止。如果常用电源有任一相电压不正常,则常用报警,备用合闸,使备用电源供电,之后持续对常用电源进行检测直至其恢复正常,备用断闸,常用合闸,常用电源重新供电,初始化进行新一轮判断。

系统软件与硬件相结合,经过调试后,能够使单片机双电源自动切换开关控制器正常运行,完成电源切换的功能。

对控制器进行测试,测试内容如下:

测试条件:常用电正常,然后断路(NA、NB、NC全为0 V),备用电正常。

测试结果:常用报警,备用电合闸,由备用电供电,切换时间约1 s。

结果分析:在信号采集阶段,图4中NB、NC经两个光电耦合在NBC处得到稳定电压值约用时0.2 s,电闸动作0.8 s。

4结论

本文设计了一种以单片机为核心的双电源自动转换开关控制器,并对其硬件与软件设计进行了深入讨论。该控制器的电压检测模块能够实时检测常用、备用电源的供电状况;系统能够自动判断电源出现的各种故障(如断相、欠压、过压等),并快速进行电源切换;控制面板能够显示当前供电状态供人工查询。与此同时,系统信号采集采用均方根算法,保证了数据的精确性与可靠性;软件编程采用C语言,语法灵活、运行速度快、效率高;在系统的硬件与软件设计中均采取了抗干扰措施,显著提高了控制器的可靠性。

参考文献

[1] 王舜尧,姚建军,王汝文.一种多功能双电源转换智能控制器[J].低压电器,2002(4) : 2931.

[2] GB/T14048.112008.低压开关设备和控制设备[S].2008.

[3] 陈众励.ATSE应用中需关注的几个问题[J].电气应用,2006(5):155157.

[4] 康洪富,张兴波.基于STC系列单片机的智能温度控制器设计[J].电子技术应用,2013,39(5):8688.

[5] 赵荣康.智能型双电源开关控制器的设计 [J].微型机与应用,2010,29(15):2224.

[6] 苏和,时述有.SSR控制的电动机正反转电路设计[J].电子技术应用,2009,35(12):6566.

[7] 杨开宇,柯慧,高印寒,等.智能压装力单片机测控系统的抗干扰设计[J].计算机测量与控制,2013,21(11):29262928.

相关问答

基于51 单片机的温度控制器 _汽配人问答

[最佳回答]图片为温度控制电路图。温度到达上限时led灯亮,并停止对RT的加热,温度达到下限时led灯灭并开始对RT进行加热。A1和A2为uA741运算放大器。引脚号在图...

单片机 、光耦

1系统总体结构原理粮食在储藏期间,由于受环境、气候和通风条件等因素的变化,粮仓内温度或湿度会发生异常,这极易造成粮食的霉烂、或发生虫害。那么...

温度控制器 可以直接与电脑通讯吗?我只想在电脑上得到温控器上的 温度 ,必须得用什么 单片机 ,plc才能行吗?

能不能直接与电脑接的回答如楼上。入门级别用51单片机既可。PC端编程可以用VB,也可以用C++。控件使用MSComm。能不能直接与电脑接的回答如楼上。入门级别用51...

通过按键来控制 单片机的 制冷和加热?

通过按键来控制单片机可实现LCD1602显示当前温度,可通过按键设置温度上下限温度超过限值制冷或制热,并通过蜂鸣器。报警STC89C52单片机为核心控制器,加上其...

多通道 温度 定时 控制器的 操作?

随着社会的快速发展和科技的进步,温度控制仪器在各个领域应用越来越广泛,自动化和智能化已经成为现代温度控制的主流发展方向,因为各行各业对于温度控制有着越...

怎么实现 单片机 控制 温度 ?

你可以选用DS18B20型号的温度传感器采集温度,用一总线将信号传输给单片机处理,进行反馈控制温度。你可以选用DS18B20型号的温度传感器采集温度,用一总线将信...

美的空调集中控制哪里购买

[回答]利用以美的空调中央控制系统、智能控制主机为核心的国际室内无线网络技术,实现门禁、空调、供暖、照明、热水器、家庭影院、窗帘、各种报警器等家庭...

单片机 怎么用pid控制1220v的加热灯-ZOL问答

这三个参数决定了PID控制器对输入信号的响应速度和稳定性。在实际应用中,通常会遇到一些问题:1.系统存在阶跃响应时间长或者存在振荡等问题;2.系统存在超调...

【英语翻译电热膜供暖 温度 控制系统设计( 基于单片机的 )】作业帮

[最佳回答]Adesignoftheelectricheatingfilmthermostatsystem(basedonthesinglechip)

单片机温度 报警器用的哪种传感器分辨率多少?

DS18B20可以测得最高12位的精度。-50~+125°范围(1)适应电压范围更宽,电压范围:3.0~5.5V,寄生电源方式下可由数据线供。(2)独特的单线接口方式,DS18B...DS.....

猜你喜欢