技术文档

单片机复位器 单片机各种复位电路原理

小编 2024-10-07 技术文档 23 0

单片机各种复位电路原理

复位电路的作用

在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。

无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。

基本的复位方式

单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位

1、手动按钮复位

手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。

图1

2、上电复位

AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1µF。上电复位的工作过程是在加电时,复位电路通过电 容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。在图2的复位电路中,当Vcc掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被定义的位置开始执行程序。

图2

3、积分型上电复位

常用的上电或开关复位电路如图3所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。

根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。

图3中:C:=1uF,Rl=lk,R2=10k

图3 积分型上电复位电路

专用芯片复位电路:

上电复位电路 在控制系统中的作用是启动单片机开始工作。但在电源上电以及在正常工作时电压异常或干扰时,电源会有一些不稳定的因素,为单片机工作的稳定性可能带来严重的影响。因此,在电源上电时延时输出给芯片输出一复位信号。上复位电路另一个作用是,*正常工作时电源电压。若电源有异常则会进行强制复位。复位输出脚输出低电平需要持续三个(12/fc s)或者更多的指令周期,复位程序开始初始化芯片内部的初始状态。等待接受输入信号(若如遥控器的信号等)。

图4 上电复位电路原理图

上电复位电路原理分析

5V电源通过MC34064的2脚输入,1脚便可输出一个上升沿,触发芯片的复位脚。电解电容C13是调节复位延时时间的。当电源关断时,电解电容C13上的残留电荷通过D13和MC34064内部电路构成回路,释放掉电荷。以备下次复位启用。

四、上电复位电路的关键性器件

关键性器件有:MC34064。

图6 内部结构框图

输入输出特性曲线

上电复位电路关键点电气参数

MC34064的输出脚1脚的输出(稳定之后的输出)如下图所示:

三极管欠压复位电路

欠压复位电路工作原理(图6)w 接通电源,+5V电压从“0V”开始上升,在升至3.6V之前,稳压二极管DH03都处于截止状态,QH01(PNP管)也处于截止状态,无复位电压输出。w 当+5V电源电压高于3.6V以后,稳压二极管DH03反向击穿,将其两端电压“箝位”于3.6V。当+5V电源电压高于4.3V以后,QH01开始导通,复位电压开始形成,当+5V电源电压接近+5V时,QH01已经饱和导通,复位电压达到稳定状态。

图6 欠压复位电路图

看门狗型复位电路

看门狗型复位电路主要利用CPU正常工作时,定时复位计数器,使得计数器的值不超过某一值;当CPU不能正常工作时,由于计数器不能被复位,因此其计数会超过某一值,从而产生复位脉冲,使得CPU恢复正常工作状态。典型应用的Watchdog复位电路如图7所示。此复位电路的可靠性主要取决于软件设计,即将定时向复位电路发出脉冲的程序放在何处。一般设计,将此段程序放在定时器中断服务子程序中。然而,有时这种设计仍然会引起程序走飞或工作不正常。原因主要是:当程序“走飞”发生时定时器初始化以及开中断之后的话,这种“走飞”情况就有可能不能由Watchdog复位电路校正回来。因为定时器中断一真在产生,即使程序不正常,Watchdog也能被正常复位。为此提出定时器加预设的设计方法。即在初始化时压入堆栈一个地址,在此地址内执行的是一条关中断和一条死循环语句。在所有不被程序代码占用的地址尽可能地用子程序返回指令RET代替。这样,当程序走飞后,其进入陷阱的可能性将大大增加。而一旦进入陷阱,定时器停止工作并且关闭中断,从而使Watchdog复位电路会产生一个复位脉冲将CPU复位。当然这种技术用于实时性较强的控制或处理软件中有一定的困难

图7 看门狗型复位电路

比较器型复位电路

比较器型复位电路的基本原理如图8所示。上电复位时,由于组成了一个RC低通网络,所以比较器的正相输入端的电压比负相端输入电压延迟一定时间。而比较器的负相端网络的时间常数远远小于正相端RC网络的时间常数,因此在正端电压还没有超过负端电压时,比较器输出低电平,经反相器后产生高电平。复位脉冲的宽度主要取决于正常电压上升的速度。由于负端电压放电回路时间常数较大,因此对电源电压的波动不敏感。但是容易产生以下二种不利现象:(1)电源二次开关间隔太短时,复位不可靠;(2)当电源电压中有浪涌现象时,可能在浪涌消失后不能产生复位脉冲。为此,将改进比较器重定电路,如图9所示。这个改进电路可以消除第一种现象,并减少第二种现象的产生。为了彻底消除这二种现象,可以利用数字逻辑的方法与比较器配合,设计如图9所示的比较器重定电路。此电路稍加改进即可作为上电复位与看门狗复位电路共同复位的电路,大大提高了复位的可靠性。

图9 改进型比较器型复位电路

图9 改进型比较器型复位电路

非常好的单片机复位电路

一、概述

影响单片机系统运行稳定性的因素可大体分为外因和内因两部分:

1、外因

射频干扰,它是以空间电磁场的形式传递 在机器内部的导体(引线或零件引脚)感生出相应的干扰,可通过电磁屏蔽和合理的布线/器件布局衰减该类干扰;

电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦合或直接传导,可通过电源滤波、隔离等措施来衰减该类干扰。

2、内因

振荡源的稳定性,主要由起振时间 频率稳定度和占空比稳定度决定 起振时间可由电路参数整定 稳定度受振荡器类型 温度和电压等参数影响复位电路的可靠性。

二、复位电路的可靠性设计

1、基本复位电路

复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开

关 或电源插头分-合过程中引起的抖动而影响复位。图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。但解决不了电源毛刺(A点)和电源 缓慢下降(电池电压不足)等问题 而且调整 RC 常数改变延时会令驱动能力变差。左边的电路为高电平复位有效右边为低电平Sm为手动复位开关Ch可避免高频谐波对电路的干扰

图1 RC复位电路

图2所示的复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电,一定宽度的电源毛刺也可令系统可靠复位。 图3所示复位电路输入输出特性图的下半部分是其特性,可与上半部比较增加放电回路的效果

图2 增加放电回路的RC复位电路

使 用比较电路,不但可以解决电源毛刺造成系统不稳定,而且电源缓慢下降也能可靠复位。图4 是一个实例 当 VCC x (R1/(R1+R2) ) =0.7V时,Q1截止使系统复位。Q1的放大作用也能改善电路的负载特性,但跳变门槛电压 Vt 受 VCC影响是该电路的突出缺点,使用稳压二极管可使 Vt 基本不受VCC影响。见图5,当VCC低于Vt(Vz+0.7V)时电路令系统复位。

图3 RC复位电路输入-输出特性

图4带电压监控功能的复位电路

图5 稳定门槛电压

图6实用的复位监控电路

在此基础上,增加延时电容和放电二极管构成性能优良的复位电路,如图6所示。调节C1可调整延时时间,调节R1可调整负载特性,如图7所示上半部分是图5电路的特性,下半部分对应图6。

图7 带电压监控功能的复位电路的输入-输出特性

2、电源监控电路

上述的带电压监控的复位电路又叫电源监控电路 监控电路必须具备如下功能:

上 电复位,保障上电时能正确地启动系统;掉电复位,当电源失效或电压降到某一电压值以下时,复位系统;市面上有类似的集成产品,如PHILIPS半导体公司 生产的MAX809、MAX810。此类产品体积小、功耗低,而且可选门槛电压。可保障系统在不同的异常条件下可靠地复位,防止系统失控。图8中的Rm和 Sm实现手动复位 无需该功能时可把Reset端(或/Reset)端直接与单片机的RST端(或/RST端)相连 最大限度地简化外围电路 也可选择PHILIPS半导体公司带手动复位功能的产品MAX708。

图8集成复位监控电路

此外,MAX708还可以监视第二个电源信号,为处理器提供电压跌落的预警功能,利用此功能,系统可在电源跌落时到复位前执行某些安全操作,保存参数,发送 警报信号或切换后备电池等。图9电表的应用实例 利用MAX708 电表可在电源毛刺或停电前把当前电度数保存到E2PROM中再配合保存多个电度数备份算法,可有效解决令工程师头疼E2PROM中的电度数掉失问题使用该 电路必须选择适当的预警电压点,以保证靠电源的储能供电情况下,VCC电压从预警电压跌到复位电压的维持时间(tB)必须足够长 E2PROM的写周期约为10-20ms一般取tB>200ms就可确保数据稳定写入。预警电压调整方法 当VDC等于预警电压时调整R1和R2使PFI的电压为1.25V此时可检测/PFO来确认内部的电压比较器是否动作,调整时必须注意此比较器是窗口比较 器。 图10是该应用的程序流程图

图9 MAX708的典型应用

图10. 电表应用中E2PROM数据保护程序流程图

3.多功能电源监控电路

除上电复位和掉电复位外,很多监控电路集成了系统所需的功能,如:

电源测控,供电电压出现异常时提供预警指示或中断请求信号,方便系统实现异常处理;数据保护,当电源或系统工作异常时,对数据进行必要的保护,如写保护、数 据备份或切换后备电池;看门狗定时器,当系统程序“跑飞”或“死锁”时,复位系统;其它的功能,如温度测控、短路测试等等。

我们把其称作多功能电源监控电路。下面介绍两款特别适合在工控、安防、金融行业中广泛应用多功能的监控电路:

Catalyst 公司的 CAT1161 是一个集成了开门狗、电压监控和复位电路的 16K 位 E2PROM(I2C接口)不但集成度高、功耗低(E2PROM部分静态时真正实现零功耗)而且清看门狗是通过改变SDA的电平实现的,节省系统I/O资 源,其门槛电压可通过编程器修改,该修改范围覆盖绝大多数应用。当电源下降到门槛电压以下时 硬件禁止访问 E2PROM 确保数据安全。

使用时注意的是 RST,/RST 引脚是 I/O 脚,CAT1161 检测到两引脚中任何一个电压异常都会产生复位信号,与 RST /RST引脚相连的下拉电阻 R2 和上拉电阻 R1 必须同时连接,否则CAT1161将不断产生复位!同样不需要手动复位功能时可节省Rm和Sm两个元件。

图11.内置WDT RESET /RESET E PROM监控器件接口电路

PHILIPS 公司的 SA56600-42 被设计用在电源电压降低或断电时作保护微电脑系统中SRAM 的数据。当电源电压下降到通常值4.2V 时,输出 CS 变为逻辑低电平,把 CE 也拉低,从而禁止对 SRAM的操作。同时,产生一个低电平有效的复位信号,供系统使用,如果电源电压继续下降,到达通常值3.3V或更低时,SA56600-42切换系统操 作,从主电源供电切换到后备锂电池供电,当主电源恢复正常(电压上升至3.3V或更高时)将SRAM的供电电源将由后备锂电池切换回主电源,当主电源上升 至大于典型值4.2V 时 输出 CS 变为逻辑高电平,使 CE 变为高电平,使能 SRAM的操作,复位信号一直持续到系统恢复正常操作为止。在系统电源电压不足或突然断电的时候,这个器件能可靠地保护系统在SRAM内的数据。

图12.内置SRAM数据保护电路的监控器件SA56600-42的典型应用

4. ARM 单片机的复位电路设计

无论在移动电话 高端手持仪器还是嵌入式系统,32位 单片机 ARM 占据越来越多的份额,ARM 已成为事实的高端产品工业标准。由于 ARM 高速、低功耗、低工作电压导致其噪声容限低这是对数字电路极限的挑战,对电源的纹波、瞬态响应性能、时钟源的稳定度、电源监控可靠性等诸多方面也提出了更 高的要求。ARM监控技术是复杂并且非常重要的。

分 立元件实现的监控电路,受温度、湿度、压力等外界的影响大而且对不同元件影响不一致较大板面积,过多过长的引脚容易引入射频干扰,功耗大也是很多应用难以 接受,而集成电路能很好的解决此类问题。目前也有不少微处理器中集成监控电路,处于制造成本和工艺技术原因,此类监控电路大多数是用低电压CMOS工艺实 现的,比起用高电压、高线性度的双极工艺制造的专用监控电路 性能还有一段差距。

结论是:使用 ARM而不用专用监控电路,可能导致得不偿失,经验也告诉我们使用专用监控电路可以避免很多离奇古怪的问题。ARM的应用工程师,切记少走弯路!

图13.用PHILIPS MAX708实现的ARM复位电路

图13 是实用可靠的 ARM 复位电路。ARM 内核的工作电压较低。R1 可保证电压低于 MAX708 的工作电源还能可靠复位。其中 TRST信号是给 JTAG 接口用的。使用 HC125 可实现多种复位源对 ARM 复位,如通过PC机串口或JTAG接口复位ARM。

相关问答

单片机复位 电压是多少?

上电复位的典型门限电压是1.4V和1.3V,即在单片机上电时,其电源电压要低于此值,才能使单片机上电复位。上电复位时,电阻给电容充电,电容的电压缓慢上升直到vcc...

因为 单片机 复位 键,那这个 复位 键的作用是什么?

CPU的Reset引脚是硬件复位的,复位键是手工加一个复位脉冲到Reset脚,执行硬件复位,不需要软件管。复位后按照CPU硬件规定的地址开始执行程序,如51是从程序地...

ATMega 单片机 复位 方式有哪几种?

单片机复位就两种方式,一个是硬件复位,一个是软件复位。硬件复位就是靠外部的硬件强行把复位管教置为低电平,例如上电的时候,还有按键。上电之所以要复...

单片机 复位 引脚是什么?

单片机的复位引脚是一种控制信号输入端口,常用来控制单片机在特定条件下的重新启动。当单片机需要重新启动时,复位信号被激活,通过该信号将单片机的所有寄存器...

单片机复位 时间常数如何计算?

1:单片机复位时间常数的计算方法有两种。原因1:通过查阅相应的单片机技术手册,可以找到计算复位时间常数的具体公式和参数。原因2:复位时间常数是根据单片机...

51 单片机复位 时p2口的值是多少?

当51单片机复位时,P2口的值取决于具体的硬件设计和程序设置。在默认情况下,P2口的值可能是未定义的或者是随机的。然而,可以通过程序设置P2口的初始值。在某...

单片机 为什么要 复位 ?

复位的主要作用是把单片机内部的特殊功能寄存器置于初始状态,使单片机硬件、软件从一个确定的、唯一的起点开始工作。开机时称为上电复位,工作中异常时可以手...

变频 器单片机复位 原因?

单片机自动复位常见的原因有:1.掉电或电压过低(我用STC单片机的时候遇到过因为电源电压过低而导致自动复位的情况)2.程序跑飞或者死机后,由看门狗...单片机...

51 单片机 复位 方式有几种?

51单片机的复位有硬件复位和软件复位两种方式。硬件复位是靠单片机外部或内部电路强行拉高RST引脚完成复位,常见的方式有RC复位、看门狗复位、低电压检测复位...

单片机 上电 复位 依靠什么?

单片机上电复位依靠复位电路实现。当单片机上电时,复位电路会使得单片机的复位引脚保持低电平,从而将单片机置于初始状态。在复位电路中通常会使用电容和电阻...

猜你喜欢