技术文档

单片机 霍尔传感器 霍尔传感器的工作原理及应用案例

小编 2024-10-08 技术文档 23 0

霍尔传感器的工作原理及应用案例

霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而

半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。

霍尔传感器的工作原理

磁场中有一个霍尔半导体片,恒定电流I从A到B通过该片。在洛仑兹力的作用下,I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位差,这就是所谓的霍尔电压。

霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低, 霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁感应强度。

关于霍尔效应

由霍尔效应的原理知,霍尔电势的大小取决于:Rh为霍尔常数,它与半导体材质有关;I为霍尔元件的偏置电流;B为磁场强度;d为半导体材料的厚度。对于一个给定的霍尔器件,当偏置电流 I 固定时,UH将完全取决于被测的磁场强度B。

一个霍尔元件一般有四个引出端子,其中两根是霍尔元件的偏置电流 I 的输入端,另两根是霍尔电压的输出端。如果两输出端构成外回路,就会产生霍尔电流。一般地说,偏置电流的设定通常由外部的基准电压源给出;若精度要求高,则基准电压源均用恒流源取代。为了达到高的灵敏度,有的霍尔元件的传感面上装有高导磁系数的镀膜合金;这类传感器的霍尔电势较大,但在0.05T左右出现饱和,仅适用在低量限、小量程下使用。

在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压。

霍尔传感器应用案例

霍尔传感器应用于出租车计价器

霍尔传感器在出租车计价器上的应用:通过安装在车轮上的霍尔传感器检测到的信号,送到单片机,经处理计算,送给显示单元,这样便完成了里程计算。 检测原理,内部采用外部中断0,车轮每转一圈(设车轮的周长是1m),霍尔开关就检测并输出信号,引起单片机的中断,对脉冲计数,当计数达到1000次时,也就是1km,单片机就控制将金额自动增加。每当霍尔传感器输出一个低电平信号就使单片机中断一次,当里程计数器对里程脉冲计满1000次时,就有程序将当前总额累加,使微机进入里程计数中断服务程序中。在该程序中,需要完成当前行驶里程数和总额的累加操作,并将结果存入里程和总额寄存器中。

霍尔传感器技术应用于汽车工业    

霍尔传感器技术在汽车工业中有着广泛的应用,包括动力、车身控制、牵引力控制以及防抱死制动系统。 为了满足不同系统的需要,霍尔传感器有开关式、模拟式和数字式传感器三种形式。 霍尔传感器可以采用金属和半导体等制成,效应质量的改变取决于导体的材料,材料会直接影响流过传感器的正离子和电子。

制造霍尔元件时,汽车工业通常使用三种半导体材料,即砷化镓、锑化铟以及砷化铟。 最常用的半导体材料当属砷化铟。霍尔传感器的形式决定了放大电路的不同,其输出要适应所控制的装置。这个输出可能是模拟式,如加速位置传感器或节气门位置传感器,也可能是数字式。如曲轴或凸轮轴位置传感器。当霍尔元件用于模拟式传感器时,这个传感器可以用于空调系统中的温度表或动力控制系统中的节气门位置传感器。霍尔元件与微分放大器连接,放大器与NPN晶体管连接。磁铁固定在旋转轴上,轴在旋转时,霍尔元件上的磁场加强。其产生的霍尔电压与磁场强度成比例。

当霍尔元件用于数字信号时,例如曲轴位置传感器、凸轮轴位置传感器或车速传感器,必须首先改变电路。 霍尔元件与微分放大器连接,微分放大器与施密特触发器连接。在这种配置中。传感器输出一个开或关的信号。在多数汽车电路中,霍尔传感器是电流吸收器或者使信号电路接地。要完成这项工作,需要一个NPN晶体管与施密特触发器的输出连接。磁场穿过霍尔元件,一个触发器轮上的叶片在磁场和霍尔元件之间通过。

我爱方案网是一个电子方案开发供应链平台,提供从找方案到研发采购的全链条服务。找方案,上我爱方案网!在方案超市找到合适的方案就可以直接买,没有找到就到快包定制开发。我爱方案网积累了一大批方案商和企业开发资源,能提供标准的模块和核心板以及定制开发服务,按要求交付PCBA、整机产品、软件或IoT系统。更多信息,敬请访问http://www.52solution.com

浅析霍尔传感器在太阳能光伏发电检测系统中的应用与选型

安科瑞 华楠

摘要: 太阳能光伏发电组件的实时检测备受关注,本文设计了基于霍尔传感器的太阳能光伏系统的检测装置。该装置主要由信号采集电路单元、数据处理单元和局域网控制器(ControllerAreaNetwork简称CAN)总线数据传输电路单元三部分结合进行检测。实验结果表明霍尔传感器的测量精度高、范围大、响应速度快、测量方法线性度好、不受外界环境因素影响,且实现实时监测发电系统运行状态并上传数据。充分证明本文设计的检测系统是高效可行的。

关键词: 霍尔传感器;光伏发电;CAN总线传输;实时检测

0引言

由于太阳能具有清洁、无污染、可再生的特点,我国又出台的新能源政策促使光伏产品质量与数量齐升。面临的首要问题是对光伏发电组件进行检测与维护。而光伏系统主要采用直流电源,可以依据输出端电压、电流来判断光伏组件运行状态。因此,监测光伏组件的输出端电压、电流具有重要意义。

监测系统主要是采集光伏组件输出电压、电流信号。但是,阵列中的电压、电流值较高且电池板间具有电位联系,导致目前实现直接测量比较困难。研究前期,提出一些测量方法:共模、差模、V/F转换无触点采样等方法来测量电压,但都存在精度低,线性度差,电压测量范围小,响应速度慢,不能适用于任何波形等缺点;采用直放式LEM传感器、罗氏线圈、电磁式电流互感器、TMR电流传感器、分流器或直接检测等方法来测量电流,但是存在零点漂移、破坏原有系统完整性、影响被测电流波形、绝缘难度大等问题。

因此,针对光伏发电系统的特殊性并结合目前的测量方法,采用依据霍尔效应制作的一种磁场传感器—霍尔传感器[5]来测量光伏阵列的电压、电流;采用CAN总线[6-7],实时上传数据至上位机。设计了一种方便操作且结构简单的可以实现实时监测光伏发电组件工作状态的装置。相比于其他单一的光伏发电监测系统,它可以克服目前测量方法存在的不足。而且具有两大优势:一是可以实现同时监测发电组件的电压、电流;二是可以实现数据的实时上传。

1设计要求

太阳能光伏阵列的检测关键是对太阳能光伏阵列输出电压、电流信号的采集。但是,电池板串联数量多使得串联整组的电压、电流高,而且每个发电组件之间的电位都有一定的联系。因此,为实现实时监测光伏发电组件的工作状态并上传数据;第一时间定位故障点的具体位置并给出报警信号。对本检测系统的设计提出以下要求:

1)传感器装置价格低廉,绝缘度高,体积小且重量轻。

2)检测系统对工作温度检测精度应高于1%,任何波形都适用,进而提高测量效率。

3)系统电压测量范围应扩大到6400V。

4)系统采样动作的延迟时间要短且不受外界影响维持长期稳定。

5)检测系统响应速度快,线性度要达0.1%

2总体结构设计

总体监测系统如图1所示,主要由信号采集电路单元、数据处理电路单元、CAN总线数据传输电路单元、稳压电路单元、拨码开关单元和数据处理计算机7部分组成。

图1总体结构

信号采集电路单元由电压信号采集电路和电流信号采集电路组成,电压、电流信号采集电路输入电压和电流信号;CAN总线数据传输电路单元对三个电路单元传输过来的数据作处理;稳压电路单元主要是提供稳定电源。

2.1信号采集电路单元结构

如图2所示,信号采集电路由8个霍尔传感器组成(H1~H7为电压霍尔传感器,H8为电流霍尔传感器)。其中电压霍尔传感器H1~H6检测单块太阳能电池板电压,H7检测串联支路两端总电压,电流霍尔传感器采集太阳能光伏阵列每条支路上的电流信号。

图2信号采集电路单元结构

其中H1~H7使用+15V直流电源供电,H8使用+5V直流电源供电。电压霍尔传感器H1~H7通过接线端子J5~J11与电池板相连(图2)产生霍尔效应,得到0~5V的电压信号。将太阳能电池板输出电流导线穿过带有电流感应孔的电流霍尔传感器H8输出额定值为0~2.5伏直流电压信号。上述电压信号连接单片机U1的A/D引脚(图3),将分压电阻R101~R108(图2)放在单片机U1与霍尔传感器之间,防止感应电压过高而损坏单片机。

图3数据处理电路单元结构

2.2数据处理电路单元结构

数据处理电路由单片机U1(PIC18F25K80)、电阻R28、电阻R1、电阻R5、电容C1~C3、电容C10、晶振Y1、LED灯L2、接线端子J1等构成。将外部+24V直流电源通过稳压电路单元接入接线端子J2的一端,接线端子J2另一端与电源芯片MC7805和MC7815相连,MC7805将24V电源转化为+5V,MC7815将24V电源转化为+15V;+5V直流电源用于为单片机和电流霍尔传感器供电,+15V直流电源用于为电压霍尔传感器供电,而电源部分为通用电路。

单片机U1内部A/D模块对接收到的霍尔传感器输出的电压信号进行数模转换。其内部模块按照如下公式进行数据计算和相应分析处理。

被测电压=((ad结果采样)*基准)/AD位数,8位AD位数=256

被测电流=((ad结果采样)*基准)/AD位数,8位AD位数=256

该算法得到的电压数据和电流数据存储至单片机U1的内部寄存器,再由其内部的ECAN模块将检测结果输出给CAN总线数据传输电路单元;数据处理电路单元中的LED指示灯L2会闪烁时单片机处于工作状态;接线端子J1是编程线,通过连接计算机USB接口可以使用计算机下载、编写和运行调试单片机U1的相关程序。

2.3CAN总线数据传输电路单元结构

CAN总线数据传输电路(图4)由通讯收发芯片U6(TJA1040)、分压电阻R2和R3、共模滤波电感L3、CAN总线滤波放大电路(图5)、瞬态抑制二极管Z1和Z2、保险F1和F2组成。U6可以实现CAN总线协议的转换,U6的1号引脚(TX)和4号管脚(RX)用来实现与U1之间的数据交互。分压电阻R2、R3连接在U6和U1之间是为了保护电路。通讯收发芯片U6的6号和7号管脚为CAN总线数据连接引脚,在它们外部连接抗感扰的共模滤波电感L3。如图5所示,该电路将输入信号进行滤波、放大,然后采用CAN总线传输电路传送信号。

图4CAN总线传输电路结构

限压型的过电压保护器件瞬态抑制二极管Z1和Z2,可以保护后续电路结构的正常使用,因为该二极管把电路中过高的电压可以控制在一个安全范围内。保险F1和F2主要是保护电路中的其他所有电子元件,以防外部电路中过高的电压输入该电路。CAN总线的OCANH、OCANL端子与接线端子J2相连接,用来执行和上位机之间的通讯操作。

通过拨码开关设置每个基于霍尔传感器的太阳能光伏发电检测系统的站号,拨码开关的每一位与单片机U1的21号~28号I/O引脚相连。每一位有开、关两种状态,手动向上拨即为开向单片机写1,手动向下拨即为关向单片机写0,拨码开关的输出相当于一个8位2进制数,即00000000-11111111,手动调节拨码开关的8个开关触点,生成一个8位2进制数,即一个检测系统的站号,每个单独的电压、电流检测系统在CAN总线中相当于一个节点,每个节点都具有自己独特的站号,可以用来准确识别总线系统里的每一个节点。

2.4CAN总线滤波放大电路

CAN总线滤波放大电路(图5)由电容C6~C8、电阻R10~R13构成。

图5滤波放大电路结构

上述数据传输电路单元得到的电压数据和电流数据经过分压电阻R2和分压电阻R3流向通讯收发芯片U6,通讯收发芯片U6自带CAN总线通讯协议,在接收到单片机U1传输的电压数据和电流数据后对其进行通讯协议转化,转化后的电压数据和电流数据信号流向共模滤波电感L3,滤除掉信号中的干扰成分,并经过电阻R12和电阻R13的分压保护,经过瞬态抑制二极管Z1和瞬态抑制二极管Z2后流向保险F1和保险F2,最终通过接线端子J2和外部CAN总线相连,并通过CAN总线将测量得到的电压数据和电流数据上传至实时监测光伏组件运行状态的数据处理计算机,完成整个检测流程。

3实验结果分析

为了验证设计的该系统的正确性,以一个实际由6*4维光伏阵列构成太阳能光伏系统为例。系统中共用到28个电压采集电路和5个电流采集电路。该系统共有4条支路并列运行,而且每6个太阳能电池板串联成一组构成一条支路。其中每一个太阳能电池板采用一个电压采集电路对其两端采集电压信号,每条支路也采用一个电压采集电路用来采集该条支路两端的总电压信号;每条支路需要采用一个电流采集电路来采集该条支路的电流信号,此外再安装一个电流采集电路来采集4条支路的总电流。运行结果如图6、图7所示。

图6电压、电流实时状态

图7电压、电流实时状态

实例中每块太阳能电池板额定输出电压为50V,串联后每组额定输出电压为300V。如图6(a)(b)为采用该霍尔传感器结果,(c)(d)为未使用结果图。二者比对分析充分体现该检测系统采用霍尔传感器对电压、电流的测量精度高、波动范围小。同时经由CAN总线将数据结果几乎无延时地上传至上位机,可以实时观测电压、电流数据。而(c)(d)地延时就很长。进一步采用单片机对数据进行分析处理得知每一个光伏组件的运行状态,并对每块太阳能板进行编号,可以清楚地了解光伏发电系统每个电池板的工作状态。

4安科瑞霍尔传感器产品选型

4.1产品介绍

霍尔电流传感器主要适用于交流、直流、脉冲等复杂信号的隔离转换,通过霍尔效应原理使变换后的信号能够直接被AD、DSP、PLC、二次仪表等各种采集装置直接采集和接受,响应时间快,电流测量范围宽精度高,过载能力强,线性好,抗干扰能力强。适用于电流监控及电池应用、逆变电源及太阳能电源管理系统、直流屏及直流马达驱动、电镀、焊接应用、变频器,UPS伺服控制等系统电流信号采集和反馈控制。

4.2产品选型

4.2.1开口式开环霍尔电流传感器

型号

额定电流

供电电源

额定输出

测量孔径(mm)

准确度

AHBC-LTA

0~(100~300)A

±15V

50mA/100mA

φ20

0.5级

AHBC-LT1005

0~1000A

±15V

200mA

/

0.5级

AHBC-LF

0~2000A

±15V

400mA

/

0.5级

表3

4.2.4直流漏电流传感器

型号

额定电流

供电电源

额定输出

测量孔径(mm)

准确度

AHLC-LTA

DC0~(10mA~2A)

±15V

5V

φ20

1级

AHLC-EA

DC0~(10mA~2A)

±15V

5V

φ40

1级

AHLC-EB

DC0~(10mA~2A)

±15V

5V

φ60

1级

表4

5结论

该系统体积小,重量轻,成本低廉可应用于未来的光伏发电系统,只需依据光伏组件的实际数量做出具体调整即可。并且证明该系统使用的传感器测量的电流、电压信号的精度高、可靠性好。因为该传感器延时短可以即时发现光伏发电系统的故障节点,更加方便工作人员及时对光伏阵列进行维护与检修,进而在保证生产成本的基础上提高了光伏发电效率。

【参考文献】

[1] 李莲,张晓,贾栋.基于霍尔传感器的太阳能光伏发电检测系统

[2] 赵书安.太阳能光伏发电及应用技术[M].南京:东南大学出版社,2011.

[3] 安科瑞企业微电网设计与应用手册2020.06版

相关问答

3144 霍尔传感器 怎么用,引脚怎么接 单片机 ,外部中断怎么写,求大神带?

中断设置成负跳变触发,引脚的话,信号接外部中断,如果电源和单片机电源共地,中断设置成负跳变触发,引脚的话,信号接外部中断,如果电源和单片机电源共地,

霍尔传感器 测速电路的输出问题_汽配人问答

[最佳回答]1、用于测速的霍尔传感器输出近似于方波,方波的周期随转速的快慢而变大变小。因此处理电路只需要简单比较即可,不需要加保持电路。2、相对于普通机...

霍尔传感器 测速直流电机时,三个引脚该怎么接线?

他由启动电阻和工作电阻俩部分线圈组成一根接火线,一根接零线,还有一根通过电容和火线相连接的而一般我们看到的直流电机只有俩个线那是因为电容已经接好了...

如何判断两轮电机 霍尔传感器 坏了?

朋友们好,我是电子及工控技术,我来回答这个问题。我认为判断电机霍尔传感器的好坏一般有三种方法,下面我先说使用测量仪器来检测电机霍尔元件的方法。对于专业...

A3144E 霍尔 元件怎么和 单片机 相连?

输出接个上拉电阻到电源即可以。上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。下拉同理。也是将不确定的信号通过一个电阻钳位在低...

单片机 测大电流的方法有哪些?

目前测量电流的方式非常有限,根据被测电流大小、电流交直流情况,可以分为三种,分别为电阻测量、互感器测量、霍尔效应原理测量等。电阻式测量方法这种也叫分...

51 单片机 支持什么芯片?

3.EEPROM存储芯片,如AT2402~AT24C5124.单总线温度传感器DS18B205.开关型霍尔传感器44E6.51最好买STC增强型单片机,如STC12C5410等,1T单片机,内部...

单片机 控制交流电机正反转的C语言程序,暂停怎么办 - m18vzr...

这个很简单,我教你怎么玩,下面是思路和方式思路:有三个输入,分别是一个按钮、两个霍尔传感器(也就是接近开关),我用P0.0到P0.2来代替;输出2个或...

基于89c51 单片机 的功率测量,怎么做?

51单片机测量功率,实际是将功率转化为测量负载的电压与电流,再根据公式P=UI,即功率等于电压*电流,计算出功率。直流电源功率测量:(1)电压采样,设计相应...这一...

单片机 功率控制原理?

单片机测量功率就是要测量电流和电压。首先测量电压,如果是直流低电压,直接用电阻分压检测模拟电压就可以测出来电压,也可以采用高精度的电压检测芯片检测电...

猜你喜欢